Filter Design Techniques

• Goal:

\[\text{Determine } H(z) \text{ or } h(n) \text{ such that } H(e^{j\omega}) \text{ meets required specifications} \]

• Typical frequency responses:

Lowpass, bandpass, highpass, differentiator

• Typical specifications:

Passband cutoff, stopband cutoff, passband errors, stopband errors

• Two major categories:

IIR Filter: “parameter efficient” but “not linear phase”

FIR Filter: “ideal linear phase” but “not parameter efficient”.
IIR Filter Design

• General approach:

 design a digital filter from an analog filter

• Typical analog filters:

 Butterworth filter: \(|H_c(j\Omega)|^2 = \frac{1}{1 + (j\Omega / j\Omega_c)^{2N}} \)

 Maximal flat in passband
 Monotonic decreasing
 Transition sharpens as \(N \) increases

 What is the transfer function?
 Where are the poles?

 Chebyshev filter (I): \(|H_c(j\Omega)|^2 = \frac{1}{1 + \varepsilon^2 V_N^2 (\Omega / \Omega_c)} \)

 \(V_N(x) = \cos(N \cos^{-1} x) \)
 \(V_{N+1}(x) = 2xV_N(x) - V_{N-1}(x) \)

 Equiripple in passband
 Monotonic in stopband
Chebyshev filter (II):

\[|H_c(j\Omega)|^2 = \frac{1}{1 + \left[\epsilon^2 V_N^2 \left(\Omega_c / \Omega \right) \right]^{-1}} \]

Equiripple in stopband

Monotonic in passband

Elliptic filter:

\[|H_c(j\Omega)|^2 = \frac{1}{1 + \epsilon^2 U_N^2(\Omega)} \]

\[U_N(\Omega): \text{Jacobian elliptic function} \]

equiripple in both passband and stopband

most efficient in parameters among all

- Frequency transformations in S-domain:

 Lowpass to lowpass:
 \[s \rightarrow \frac{\Omega_p}{\Omega_p} s \]

 Lowpass to highpass:
 \[s \rightarrow \frac{\Omega_p^2 \Omega_p'}{s} \]

 Lowpass to bandpass:
 \[s \rightarrow \Omega_p \frac{s^2 + \Omega_l \Omega_u}{s(\Omega_u - \Omega_l)} \]
Lowpass to bandstop: \(s \to \Omega_p \frac{s(\Omega_u - \Omega_l)}{s^2 + \Omega_l \Omega_u} \)

- Design techniques (from analog to digital):

 Impulse invariance: \(h(n) = Th_c(nT) \)

 Bilinear transformation: \(s = \frac{2 \left(1 - z^{-1}\right)}{T \left(1 + z^{-1}\right)} \)

- **Impulse invariance:**

 Let \(h(n) = Th_c(nT) \)

 Then \(H(e^{j\omega}) = H_c\left(\frac{j\omega}{T}\right) \) for \(|\omega| \leq \pi \)

 Assumption: Nyquist rate must be satisfied.

 Lowpass filter is the most proper choice.

- Some key equations:

\[
H_c(s) = \sum_{k=1}^{N} \frac{A_k}{s - s_k}
\]

\[
h_c(t) = u_c(t) \sum_{k=1}^{N} A_k e^{s_k t}
\]

\[
h(n) = Tu(n) \sum_{k=1}^{N} A_k e^{s_k Tn}
\]
\[
H(z) = \sum_{k=1}^{N} \frac{TA_k}{1 - e^{s_k T} z^{-1}}
\]

A pole at \(s_k \) in the \(S \)-plane is mapped to \(e^{s_k T} \) in the \(Z \)-plane.

The same rule does NOT apply to the zeros!

- The design procedure: see Example 7.2 (p.446).

Step 1: determine the specifications in the frequency domain with \(T=1 \) without loss of generality;

Step 2: determine the parameters of the magnitude frequency response function of an analog filter (e.g., Butterworth);

Step 3: Determine the (stable) poles of the \(S \)-domain transfer function;

Step 4: Determine the fractional expansion of the \(S \)-domain transfer function;

Step 5: Determine the \(Z \)-domain transfer function in the fractional form; and then simplify.
• Bilinear transformation:

\[
\frac{s}{T} = \frac{2(1 - z^{-1})}{1 + 2^{-1}z^{-1}} \quad \text{or} \quad z = \frac{1 + (T/2)s}{1 - (T/2)s}
\]

where \(T \) can be any value.

Left half plane of \(S \) is mapped onto inside the unit circle of \(Z \)

The right half plane of \(S \) is mapped onto outside the unit circle of \(Z \)

The imaginary axis of \(S \) is mapped onto the unit circle of \(Z \)

\[i.e., \quad \Omega = \frac{2}{T} \tan(\omega/2) \]

a nonlinear mapping (see Figures 7.6-7.8)

• The design procedure: *see Example 7.3 (p.454)*

Step 1: determine the specifications in the frequency domain with \(T = 1 \);

Step 2: determine the parameters of the magnitude frequency response function of an analog filter (e.g., Butterworth);
Step 3: Determine the (stable) poles of the S-domain transfer function;

Step 4: Determine the S-domain transfer function;

Step 5: Determine the Z-domain transfer function via the bilinear transform.

- Frequency transformations in the Z-domain:

 Lowpass to lowpass: \[z^{-1} \rightarrow \frac{z^{-1} - a}{1 - az^{-1}} \]

 Lowpass to highpass: \[z^{-1} \rightarrow -\frac{z^{-1} + a}{1 + az^{-1}} \]

 Lowpass to bandpass: \[z^{-1} \rightarrow -\frac{z^{-2} - a_1z^{-1} + a_2}{a_2z^{-2} - a_1z^{-1} + 1} \]

 Lowpass to bandstop: \[z^{-1} \rightarrow \frac{z^{-2} - a_1z^{-1} + a_2}{a_2z^{-2} - a_1z^{-1} + 1} \]

 Where the values of a’s are chosen to meet the required cutoff frequencies (for details, see Digital Signal Processing, J. G. Proakis, p.649)