REFERENCES

where \(a_i \) is the \(i \)-th complex amplitude (none zero); \((y_i, z_i) = (e^{j\omega_i}, e^{j\omega_i})\) defines the \(i \)-th 2-D frequency \((\omega_i, \omega_i)\); \(N_z \) is the number of the 2-D sinusoids. Naturally, \((y_i, z_i)\) should be distinct. Let \(d_y \) and \(d_z \) be the numbers of distinct poles in \(\{y_i\} \) and \(\{z_i\} \), respectively. Let \(m_y \) and \(m_z \) be the maximum multiplicity in \(\{y_i\} \) and the maximum multiplicity in \(\{z_i\} \), respectively.

It follows from the definition that \(m_y \leq d_y \) and \(m_z \leq d_z \).

The block Hankel matrix of \(x(m, n) \) is defined as

\[
X_e = \begin{bmatrix}
X_0 & X_1 & \cdots & X_{M-K} \\
X_1 & X_2 & \cdots & X_{M-K+1} \\
\vdots & \vdots & \ddots & \vdots \\
X_{K-1} & X_K & \cdots & X_{M-1}
\end{bmatrix}
\]

where for \(m = 0, 1, \ldots, M-1 \),

\[
X_{em} = \begin{bmatrix}
x(m, 0) & x(m, 1) & \cdots & x(m, N-L) \\
x(m, 1) & x(m, 2) & \cdots & x(m, N-L+1) \\
\vdots & \vdots & \ddots & \vdots \\
x(m, L-1) & x(m, L) & \cdots & x(m, N-1)
\end{bmatrix}
\]

in which \(K \) and \(L \) are called the window-size parameters.

Based on (1), the block Hankel matrix \(X_e \) can be decomposed as follows. We define

\[
V(e, r) = \begin{bmatrix}
ev_0 & ev_0 & \cdots & ev_{N_y} \\
ev_1 & ev_1 & \cdots & ev_{N_y} \\
\vdots & \vdots & \ddots & \vdots \\
ev_{N_y} & ev_{N_y} & \cdots & ev_{N_y}
\end{bmatrix}
\]

where \(e = (v_0, v_1, \ldots, v_{N_y})^T \) is a vector. Then we can write (also shown in [2])

\[
X_e = X_e(K, L) = E_iA_dE_r
\]

where

\[
E_i = E_i(K, L) = \begin{bmatrix}
V(z, L) \\
V(z, L)Y_{d_2} \\
\vdots \\
V(z, L)Y_{d_2}^{K-1}
\end{bmatrix}_{KL \times N_z}
\]

and

\[
A_d = \begin{bmatrix}
d_1 & 0 \\
0 & \vdots \\
0 & d_2
\end{bmatrix}_{N_z \times N_z}
\]

It is clear from (2) that \(\text{rank}(X_e) \leq N_z \). What we need to address next is the conditions that should be satisfied by the window-size parameters \(K \) and \(L \) such that \(\text{rank}(X_e) \) is equal to the desired value \(N_z \). The general results are shown in Fig. 1, and the detailed derivations are given in the next section.

III. The Conditions on the Window Size

Note that the matrix \(E_i \) takes a form identical to that of the following matrix:

\[
O_k = O_k(C, A) = \begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{k-1}
\end{bmatrix}
\]

where \(k \geq 1 \), and \(A \) and \(C \) are \(n \times n \) and \(m \times n \) matrices. When \(k = n \), \(O_n \) is known as the observability matrix of the pair \((C, A)\). Associated with the matrix \(O_k \), the following two lemmas will be useful.

Lemma 1: Let \(n_1 \) be the order of the minimum polynomial of \(A \). Then for \(n' \geq n_1 \), \(\text{rank}(O_{n'}) = n \) iff \(\text{rank}(\left[A^{n'} - \lambda I \right]) = n \) for all eigenvalues \(\lambda \) of \(A \).

Proof: This lemma is a generalization of the Theorem 9 in [1] (p. 240).

Lemma 2: If \(\text{rank}(\left[A^n - \lambda I \right]) < n \) for some eigenvalue of \(A \), then \(\text{rank}(O_k) < n \) for all \(k \geq 1 \).

Proof: Let \(\lambda \) be the eigenvalue of \(A \) such that \(\text{rank}(\left[A^n - \lambda I \right]) < n \). Then there is a vector \(x \neq 0 \) such that \(\lambda x = Ax \) and \(Cx = 0 \). So \(CA^kx = 0 \) for all \(k \geq 1 \). Hence, \(O_kx = 0 \) for all \(k \geq 1 \). Therefore, \(\text{rank}(O_k) < n \) for all \(k \geq 1 \).

Now we are ready to provide the following.

Theorem 1:

a) If \(K \geq d_y \), then \(\text{rank}(E_i(K, L)) = N_z \) iff \(L \geq m_z \).

b) If \(L \geq d_z + 1 \), then \(\text{rank}(E_r(K, L)) = N_z \) iff \(K \geq m_z \). If \(L \leq N - d_z + 1 \), then \(\text{rank}(E_r(K, L)) = N_z \) iff \(K \leq M - m_z + 1 \).

c) \(\text{rank}(X_e(K, L)) = N_z \) if the conditions in a) and b) are met.

Proof: First, we consider \(E_i(K, L) \). Let \((C, A) = [V(z, L), Y_d]\). Since \(A \) is a diagonal matrix, all eigenvalues of \(A \) are the elements on the diagonal. Let \(\lambda = y_i \) be an element in \(\{y_i\} \) with a multiplicity \(m_z \), then we can transform, by a simple column permutation as follows:

\[
\begin{bmatrix}
M - A \\
C
\end{bmatrix}
\begin{bmatrix}
D_1 & 0 \\
0 & \vdots \\
0 & D_2
\end{bmatrix}
\]

where...

[Fig. 1. Regions of window size parameters. For region GI, the block Hankel matrix is of a rank less than the desired. Region G0, is the uncertain region where the block Hankel matrix may or may not have its rank equal to the desired. M and N define the size of the original data set. m_y and m_z denote the maximum multiplicities of poles in the first and second dimensions, respectively. d_y and d_z denote the numbers of distinct poles in the first and second dimensions, respectively. The sufficient condition given in [2] is a subset of GI.]

...
and, hence, we have
\[
\text{rank}\left(\begin{bmatrix} M - A \end{bmatrix}\right) = \text{rank}\left(\begin{bmatrix} D_1 & 0 \\ 0 & V_1 V_2^H \end{bmatrix}\right)
\]
\[
= \text{rank}(D_1) + \text{rank}(V_2)
\]
where \(D_1 = \text{diag}(y_1 - y_1', \ldots, y_n - y_n') \), \(V_2 = V' = \begin{bmatrix} z_1', \ldots, z_m' \end{bmatrix}^T, I \), none of \(\{y_1, \ldots, y_n\} \) is equal to \(y_i \), and the polynomials in \(\{z_1', \ldots, z_m'\} \subset \{\zeta_1, \ldots, \zeta_N\} \) are distinct. So the rank of \(D_1 \) is \(N_s - m \). The rank of \(V_2 \) is \(m \) iff \(L \geq m \). Hence, \(\text{rank}\left(\begin{bmatrix} M - A \end{bmatrix}\right) = N_s \) for \(\lambda = y_1 \) iff \(L \geq m \). Therefore, \(\text{rank}\left(\begin{bmatrix} M - A \end{bmatrix}\right) = N_s \) for all \(\lambda \in \{y\} \) iff \(L \geq m \). Since \(A \) has \(d_y \) distinct diagonal elements, the order of the minimum polynomial of \(A \) is equal to \(d_y \). So, by Lemma 1, for \(K \geq d_y \),
\[
\text{rank}(E_{\lambda}(K, L)) = N_s \text{ iff } L \geq m_y.
\]
We can symmetrically get the other half conclusion of (a) by using the fact that there exists a permutation matrix \(P \) [2] such that
\[
P E_{\lambda} = \begin{bmatrix} V(y, K) & Z_d \\ V(y, K)Z_d & \vdots & \vdots \end{bmatrix} = O_1[V(y, K), Z_d] \quad (5)
\]
where \(y = (y_1, \ldots, y_N)^T \) and \(Z_d = \text{diag}(z_1', \ldots, z_N') \).

Part (b) follows readily from part (a) since \(E_{\lambda} = E_{\lambda}^T (M - K + 1, N - L + 1) \).

From (2), we know that \(\text{rank}(X_{\lambda}(K)) = N_s \) if \(\text{rank}(E_{\lambda}) = N_s \). Combining (a) and (b), we have (c). Q.E.D.

Theorem 2:
1) \(\text{rank}(E_{\lambda}(K, L)) = N_s \) if \(L < m_y \) or \(K < m_x \).
2) \(\text{rank}(E_{\lambda}(K, L)) < N_s \) if \(L > N - m_y + 1 \) or \(K > M - m_x + 1 \).
3) \(\text{rank}(X_{\lambda}(K, L)) < N_s \) if \(L < m_y \) or \(K < m_x \) or \(K > M - m_x + 1 \).

Proof: Following the first paragraph of the proof for Theorem 1, one can show that if \(\lambda = y_1 \) that has the maximum multiplicity \(m_y \), then \(\text{rank}(V_2) < m_y \) if \(L < m_y \) and hence \(\text{rank}(\begin{bmatrix} M - A \end{bmatrix}) \) is empty when \(L < m_y \). Therefore, by Lemma 2, \(\text{rank}(E_{\lambda}(K, L)) = N_s \) if \(L < m_y \). Other proofs can be done similarly. Q.E.D.

By Theorems 1 and 2, the whole window size set \(G = \{K, L\} : 1 \leq K \leq M, 1 \leq L \leq N \} \) is divided into three sets \(G = G_0 \cup G_1 \cup G_2 \) (see Fig. 1). For the sets \(G_0 \) and \(G_1 \), we have definite answers: i.e., \(\text{rank}(X_{\lambda}(K, L)) = N_s \) when \((K, L) \in G_0 \), and \(\text{rank}(X_{\lambda}(K, L)) = N_s \) when \((K, L) \in G_1 \). But for \(G_2 \), the answer is uncertain depending on the distribution of the signal poles. In other words, \(\text{rank}(X_{\lambda}(K, L)) \) may be less than or equal to \(N_s \) for \((K, L) \in G_2 \). It should be noted that the sufficient condition given in [2], i.e., \(N_s \leq K \leq M - N_y + 1 \) and \(N_s \leq L \leq N - N_y + 1 \), is a subset of \(G_1 \).

When \(m_y = d_y \) and \(m_x = d_x \), the set \(G_a \) is empty. From Theorems 1 and 2, we have the following sufficient and necessary constraint on the window size under which the rank of the enhanced data matrix is equal to the desired number.

Corollary 1: If \(m_y = d_y \) or \(m_x = d_x \), then
\[
\text{rank}(X_{\lambda}(K, L)) = N_s \text{ iff } d_x \leq K \leq M - d_x + 1,
\]
\[
\text{or } d_y \leq L \leq N - d_y + 1.
\]
Note that the condition of Corollary 1 is satisfied when all 2-D frequencies are scattered on a rectangular grid (not necessarily uniform) and at least one straight line in each dimension on the grid is fully occupied by 2-D frequencies, which is illustrated in Fig. 2.

REFERENCES

High-Speed Systolic Ladder Structures for Multidimensional Recursive Digital Filters

Xiaojian Liu and Leonard T. Bruton

Abstract— We propose a multilevel approach for designing high-speed systolic ladder structures for multidimensional (MD) recursive digital filters. Based on appropriately selected 1-D filter structures for each filter dimension (or level), a large variety of MD systolic filter structures may be derived. In particular, we introduce a new 1-D filter structure that proves the most suitable structure in terms of a systolic ladder implementation, because it leads to MD ladder filter structures possessing such important properties as the shortest critical path (for filters without order augmentation), the canonical number of high-level storage registers (e.g., line and frame registers of images), and local interconnectivity.

I. INTRODUCTION

High-speed multidimensional (MD) digital filtering is very useful for real-time video signal processing such as video image coding, bandwidth compression, sampling rate conversion and the enhancement of television signals. In this contribution, we are concerned

Manuscript received March 16, 1993; revised August 22, 1995. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Russell M. Mersereau.

The authors are with the Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada.

Publisher Item Identifier S 1053-587X/96/02273-6.