Generalized Pencil-of-Function Method for Extracting Poles of an EM System from Its Transient Response

YINGBO HUA, MEMBER, IEEE, AND TAPAN K. SARKAR, SENIOR MEMBER, IEEE

Abstract—A generalized pencil-of-function (GPOF) method for extracting the poles of an EM system from its transient response is developed. The GPOF method needs the solution of a generalized eigenvalue problem to find the poles. This is in contrast to the conventional Prony and pencil-of-function methods which yield the solution in two steps, namely, the solution of an ill-conditioned matrix equation and finding the roots of a polynomial. Subspace decomposition is also used to optimize the performance of the GPOF method. The GPOF method has advantages over the Prony method in both computation and noise sensitivity, and approaches the Cramer–Rao bound when the signal-to-noise ratio (SNR) is above threshold. An application of the GPOF method to a thin-wire target is also presented.

I. INTRODUCTION

It is known [1]–[8] that in target identification extracting various features of the target from its transient response is desired. The target poles that contain the information of the decay factors and the resonant frequencies should be estimated with high accuracy while the residues can be computed by solving a linear least squares problem [1] after the poles are obtained.

The Prony method [1]–[3] has been a very popular technique for pole retrieval. There are also many versions of the Prony method, which include the least square (LS) Prony method, the total least square (TLS) Prony method, and the SVD Prony method. An alternative method is the pencil-of-function (POF) method [4], [9]. Very recently, the idea of the POF method has been explored along with ESPRIT [10], and this has resulted in improved and generalized versions [11]–[14]. This paper, which is a result of this exploration, presents a generalized pencil-of-function (GPOF) method. The GPOF method finds poles by solving a generalized eigenvalue problem instead of the conventional two-step procedure where the first step involves the solution of a matrix equation, and the second step entails finding the roots of a polynomial, as is required by the Prony method. We develop the GPOF method and discuss its computational aspects in Section II. The noise sensitivity of the GPOF method is addressed in Section III. In Section IV, an application of the GPOF method to a thin-wire target is presented.

II. GENERALIZED PENCIL-OF-FUNCTION METHOD

It is known that an EM transient signal can be described by

\[y_k = \sum_{i=1}^{M} b_i \exp (s_i \delta t k) \] \hspace{1cm} (1)

where \(k = 0, 1, \cdots, N - 1 \), \(b_i \) are the complex residues, \(s_i \) are the complex poles, and \(\delta t \) is the sampling interval. For notational brevity, we can let \(z_i = \exp (s_i \delta t) \) which are the poles in the Z-plane. It is clear that \(b_i \) and \(s_i \) should, respectively, be in complex conjugate pairs for real valued \(y_k \).

Following the idea of the pencil-of-function method, we consider the following set of "information" [9] vectors:

\[y_0, y_1, \cdots, y_L \]

where

\[y_i = [y_i, y_{i+1}, \cdots, y_{i+N-L-1}]^T. \] \hspace{1cm} (2)

The superscript \(T \) denotes transpose of a matrix. Based on these vectors, we define the matrices \(Y_1 \) and \(Y_2 \) as

\[Y_1 = [y_0, y_1, \cdots, y_{L-1}] \] \hspace{1cm} (3)

\[Y_2 = [y_1, y_2, \cdots, y_L]. \] \hspace{1cm} (4)

To look into the underlying structure of the two matrices, one can write

\[Y_1 = Z_1 B Z_2 \] \hspace{1cm} (5)

\[Y_2 = Z_1 B Z_2 Z_2 \] \hspace{1cm} (6)

where

\[Z_1 = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ z_1 & z_2 & \cdots & z_M \\ \vdots & \vdots & \ddots & \vdots \\ z_1^{N-L-1} & z_2^{N-L-1} & \cdots & z_M^{N-L-1} \end{bmatrix} \] \hspace{1cm} (7)

\[Z_2 = \begin{bmatrix} 1 & z_1 & \cdots & z_1^{L-1} \\ \vdots & \ddots & \ddots & \vdots \\ 1 & z_M & \cdots & z_M^{L-1} \end{bmatrix} \] \hspace{1cm} (8)

\[Z_0 = \text{diag} [z_1, z_2, \cdots, z_M] \] \hspace{1cm} (9)

\[B = \text{diag} [b_1, b_2, \cdots, b_M]. \] \hspace{1cm} (10)

Based on the above decomposition of \(Y_1 \) and \(Y_2 \), one can show...
that if $M \leq L \leq N - M$ the poles $\{z_i; i = 1, \cdots, M\}$ are the generalized eigenvalues \cite{10, 17} of the matrix pencil $Y_2 - zY_1$. Namely, if $M \leq L \leq N - M$, $z = z_i$ is a rank-reducing number of $Y_2 - zY_1$. If $L = M$, this method is the same as the basic POF method as in \cite{12} and equivalent to a version of Ibrahim time-domain (ITD) method \cite{16}. However, in the GPOF method, we are more interested in different values of L for $M \leq L < N - M$. The significance of this will be shown later.

To develop and illustrate the use of an algorithm for computing the generalized eigenvalues of the matrix pencil problem we can write
\begin{equation}
Y_1^+ Y_2 = Z_2^+ B^{-1} Z_1^+ Z_1 B Z_2
\end{equation}
where the superscript $+$ denotes the (Moore–Penrose) pseudo-inverse \cite{17}, whereas we use `$-$' for the (regular) inverse. It can be seen from (11) that there exist vectors $\{p_i; i = 1, \cdots, M\}$ such that
\begin{equation}
Y_1^+ Y_1 p_i = p_i,
\end{equation}
and
\begin{equation}
Y_1^+ Y_2 p_i = z_i p_i.
\end{equation}
The p_i are called the generalized eigenvectors of $Y_1 - z_i Y_2$.

To compute the pseudo-inverse Y_1^+, one can use the singular value decomposition (SVD) \cite{17} of Y_1 as follows:
\begin{equation}
Y_1 = \sum_{i=1}^{\min(N-L,L)} \sigma_i u_i v_i^H
\end{equation}
\begin{equation}
= UDV^H
\end{equation}
\begin{equation}
Y_1^+ = V D^{-1} U^H
\end{equation}
where $U = [u_1, \cdots, u_M], V = [v_1, \cdots, v_M]$, and $D = \text{diag} \{\sigma_1, \cdots, \sigma_M\}$. The superscript H denotes the conjugate transpose of a matrix. U and V are matrices of left and right singular vectors, respectively. Note that for noisy data y_0 one should choose $\sigma_M, \cdots, \sigma_1$ to be the M largest singular values of Y_1, and the resulting Y_1^+ is called the truncated pseudo-inverse of Y_1. Since $Y_1^+ Y_1 = V V^H$ and $V^H V = I$, substituting (15) into (13) and left multiplying (13) by V^H yields
\begin{equation}
(Z - z_i I) z_i = 0
\end{equation}
where $i = 1, \cdots, M$, and
\begin{equation}
Z = D^{-1} U^H Y_2 V,
\end{equation}
and
\begin{equation}
z_i = V^H p_i.
\end{equation}
Note that Z is an $M \times M$ matrix, and z_i and z_i are, respectively, eigenvalues and eigenvectors of Z. Now we have completed the description of an algorithm of the GPOF method.

It is important to mention that the number of poles, M, can be estimated from the singular values, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_M$ $\geq \cdots \geq \sigma_{\min(N-L,L)}$, since $\sigma_{M+1} = \cdots = \sigma_{\min(M-L,L)} = 0$ for noiseless data.

If $L = M$, the SVD of the Y_1 is not required, and $\{z_i; i = 1, \cdots, M\}$ are the eigenvalues of the $M \times M$ matrix $(Y_1^H Y_1)^{-1} Y_1^H Y_2$, which is obtained by substituting $Y_1^+ = (Y_1^H Y_1)^{-1} Y_1^H$ into (13) for $L = M$. Furthermore, one can verify that with or without noise,
\begin{equation}
(Y_1^H Y_1)^{-1} Y_1^H Y_2 =
\begin{bmatrix}
0 & 0 & -c_M \\
1 & 0 & -c_{M-1} \\
\vdots & \ddots & \ddots \\
& & \ddots & \ddots \\
& & & 1 & -c_1
\end{bmatrix}
\end{equation}
which is the companion matrix of the polynomial
\begin{equation}
1 + \sum_{i=1,M} c_i z^{-i} = 0,
\end{equation}
where
\begin{equation}
\begin{bmatrix}
c_M \\
\vdots \\
c_1
\end{bmatrix} = -(Y_1^H Y_1)^{-1} Y_1^H y_M
\end{equation}
which is the solution of the least square Prony method. So for $L = M$ the GPOF method is equivalent to the LS Prony method.

The total least square Prony method is to compute the polynomial coefficients as follows:
\begin{equation}
c = \text{arg min} \{e^H Y^H Y e; \|e\| = 1\}
\end{equation}
where $Y = [y_0, y_1, \cdots, y_M]$ and $c = [c_M, \cdots, c_1, c_0]^T$. A perturbation analysis \cite{12} has shown that the LS Prony method and the TLS Prony method are equivalent to the first-order perturbation approximation.

The SVD Prony method (for $L > M$) is to compute $c_L = [c_{L-1}, \cdots, c_0]^T$ by
\begin{equation}
c_L = -(Y_1^H Y_2)^* Y_1^H y_0 = -Y_2^* y_0
\end{equation}
detect the M signal roots, i.e., $\{z_i^{-1}; i = 1, \cdots, M\}$, from the L roots of the L-degree polynomial $1 + \sum_{i=1,L} c_L z_i^{-1}$. But the detection is guaranteed (without noise) to be successful only when all $z_i (z_i^{-1})$ are inside (outside) or on the unit circle \cite{21}. Computationally, solving for the roots of an L-degree polynomial is also a disadvantage of the SVD Prony method, compared to solving M eigenvalues of an $M \times M$ matrix for the GPOF method.

III. NOISE SENSITIVITY OF GPOF METHOD

In this section, we illustrate the noise sensitivity of the GPOF method through some numerical examples. Specifically, we let
\begin{equation}
y_k = \sum_{i=1,J} A_i \sin (w_i k + \phi_i) \exp (-\alpha_i k)
\end{equation}
where $k = 0, 1, \cdots, N-1, N = 30, J = 2 (M = 2, J = 4)$, $A_1 = A_2 = 1, w_1 = 0.2 \pi, \omega_0 = 0.53 \pi, \phi_1 = \phi_2 = 0, \alpha_1 = 0.02 \pi, \alpha_2 = 0.035 \pi$. Note that $z_i = \exp (s_i \delta t) = \exp (-\alpha_i + j \omega_0)$, for $i = 1$ and 2, and $z_i = z_i^*$, for $i = 3$ and 4. The superscript asterisk denotes the complex conjugation. It is
also important to note that α_1 and w_1 are, respectively, damping factors and resonant frequencies normalized by the sampling frequency $f_s = 1/5t$. (There is no need to specify the sampling frequency for our numerical simulations. The sequence as in (24) is the only sampled data sequence used in this section for illustration purposes.) The first-order perturbation analysis of the GPOF method is outlined in the Appendix. For the analysis, it is assumed that the additive noise in y_k is white and sufficiently weak so that the first-order approximation can be carried out through the derivation. Fig. 1 shows the inverted perturbation variance in dB of w_1 (imaginary part of the pole) versus the pencil parameter L. The Cramer–Rao bound provides the “absolute” best result that any technique can achieve in the present “noisy” environment. The GPOF method approximately reached the Cramer–Rao bound. This implies that “no” other theoretical technique can do any better! Fig. 2 shows the same thing for α_1 (real part of the pole). The plots for w_2 and α_2 are similar to the above two figures, and hence are omitted from this paper. As one observes, the optimal choice of L is around $L = N/2$. Intuitively, this phenomenon can be explained as follows.

The noiseless Y_1 (or Y_2) has a column subspace of dimension M. (Note that the GPOF method requires $L \geq M$ and $N - L \geq M$.) This subspace is called the signal subspace, denoted by S_2. But the noisy Y_1 (or Y_2), which consists of signal and noise, spans a column subspace, denoted by S_{2+N}, of dimension equal to $\min(N-L, L)$. It is clear that we can write $S_{2+N} = S_2 + S_N$, where S_N contains all signal components and the noise components projected onto the signal subspace, and S_N contains noise only. As is seen in the GPOF method, we perform subspace decomposition of Y_1 as in (14) and throw away the noise component in S_N which is spanned by u_i for $i > M$. It seems, therefore, that the larger the noise subspace S_N, the more noise can be filtered out by the GPOF method. The dimension of S_N is the largest when $N - L = L$, i.e., $L = N/2$. This is consistent with our perturbation analysis. Note that around $L = N/2$ the performance of the GPOF method is very close to the optimal bound, i.e., the Cramer–Rao bound [14], [19]. A different interpretation of a similar phenomenon with the ITD method was made in [16].

With the choice $L = N/2 = 15$, some simulation results for the GPOF method are shown in Figs. 3 and 4. The (Monte-Carlo) simulation was conducted with 200 runs. During each run, we computed the estimated α_1 and w_1 from the data contaminated by (pseudo) white Gaussian noise. (Note that $\alpha_i = -\Re \{\log |z_i|\}$ and $w_1 = \Im \{\log |z_i|\}$.) The noise used in each run is independent of that used in others. Figs. 3 and 4 show the inverted sample variances (denoted by the plus signs) in dB of the estimated w_1 and α_1 versus SNR which is defined
by
\[\text{SNR} = \sum_{k=0, N-1} |y_k|^2 / N \sigma^2 \] \hfill (25)
and
\[\text{SNR (dB)} = 10 \log_{10} (\text{SNR}). \] \hfill (26)

\(\sigma^2 \) is the noise variance. The straight lines are obtained from the perturbation analysis. As one observes, for high SNR, the simulation results agree with the analytical results. As a reference, the simulation results of the LS Prony method are also shown in the plots. The detailed perturbation analysis of the Prony method is available in [14], [15]. The noisy data used for the LS Prony method were the same as those used for the GPOF method. We should mention that the SVD Prony method as represented by (21) performs better than the LS Prony method and the TLS Prony method [21]. In fact, the SVD Prony method performs almost as well as the GPOF method for this particular example. However, it can be shown, in general, [12]-[14] that the GPOF method is less sensitive to noise than the SVD Prony method.

IV. AN APPLICATION

Consider that a 2-m dipole antenna of radius 0.001m is illuminated by a short EM pulse of the form

\[E_{\text{inc}} = \eta / (\pi^{1/2} c \sigma) \exp \left[- (t - t_0)^2 / \sigma^2 \right] \]

from broadside where \(\eta = 377 \text{ ohms, } c = 3 \times 10^8 \text{ m/s, } \sigma = 0.5 / c, \) and \(t_0 = 6 \sigma. \) The current response at the center point of the dipole was computed by the approach in [20] with sampling time \(\delta t = 0.5 \text{ ns, } \) and is shown in Fig. 5. To get the intrinsic poles of the dipole itself, we considered a segment of the current for \(t = 8.4 \text{ through 25.5 lightmeters, which consists of 114 samples. } \) Note that for \(t > 8.4 \text{ lightmeters the EM pulse } E_{\text{inc}} \text{ is almost zero. } \) Fig. 6 shows the fast Fourier transform (FFT) amplitude spectrum of the current. From the spectrum, four resonant components are detected at 0.0684, 0.203, 0.391, and 0.414 GHz. The spectrum was computed with resolution equal to \(f_0 / 1024 = 0.00195 \text{ GHz. } \)

Applying the GPOF method with \(L = N/2 = 57 \) to the 114 sampled data, we observed that the ten largest singular values of the data matrix \(Y \) are 9.3, 7.7, 0.45, 0.42, 0.057, 0.056, 0.039, 0.0388, 0.0052, and 0.0049. With \(M = 8 \) (since there is a large drop from the eighth singular value to the ninth), the GPOF method yielded the following poles (i.e., \(\gamma \delta t = \log |z_i| = - \alpha_i + j \omega_i):\)

\[-0.0204 \pm j0.218, -0.0266 \pm j0.642, -0.0046 \pm j1.17, 0.0039 \pm j1.27, \]

By least squares fitting [1], the corresponding residues (absolute values) were computed to be

\[0.3835 \times 10^0, 0.2456 \times 10^{-1}, 0.9379 \times 10^{-3}, 0.7506 \times 10^{-3} \]

From the first six stable poles, three estimated resonant frequencies \(f_i = \omega_i / 2 \pi \delta t \) are obtained to be 0.0694, 0.204, and 0.372 GHz. The unstable estimated poles with the frequency 0.404 GHz appear to correspond to the 'fourth' resonant component as is shown in the FFT spectrum. Applying the LS Prony method to the same data samples and with the assumption \(M = 8, \) we found the following poles:

\[-0.0203 \pm j0.218, -0.0261 \pm j0.645, -0.0043 \pm j1.251, 0.611 \pm j2.244. \]

It is seen that the first two pairs of poles are close to the corresponding pairs obtained by the GPOF method while the next two pairs differ from those obtained by the GPOF method. In the following table, the resonant frequencies estimated by different approaches are compared for the identical data records.

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>(f_3)</th>
<th>(f_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>By (f_i = c(21 - 1)/2L)</td>
<td>0.0750</td>
<td>0.225</td>
<td>0.375</td>
<td>*</td>
</tr>
<tr>
<td>By GPOF</td>
<td>0.0694</td>
<td>0.204</td>
<td>0.372</td>
<td>0.404</td>
</tr>
<tr>
<td>By FFT</td>
<td>0.0684</td>
<td>0.203</td>
<td>0.391</td>
<td>0.414</td>
</tr>
<tr>
<td>By LS Prony</td>
<td>0.0694</td>
<td>0.205</td>
<td>0.398</td>
<td>0.714</td>
</tr>
</tbody>
</table>

\(L \) is the length of the dipole and \(c \) is the light velocity. It is clear that for the same data, the GPOF method provides a stable solution.

V. CONCLUSION

We have presented the GPOF method which solves a generalized eigenvalue problem to estimate poles of EM
system. In this new approach, one finds the poles directly by solving a generalized eigenvalue problem. This is in contrast to the contemporary methods like Prony and pencil-of-function methods, which are generally two step processes. In the first step one solves a matrix equation followed by finding the roots of a polynomial. Compared to the SVD Prony method, the GPOF method is less restricted because it does not require that all system poles must be either stable or nonstable, and computationally more efficient because it does not solve an Lth-degree polynomial. Compared to the LS or TLS Prony method, the GPOF method is more robust to noise as has been shown. An application of the GPOF method to a synthesized dipole has been shown, with comparison to the FFT and the LS Prony method.

APPENDIX

In this section, we give an outline of the first order perturbation analysis of the GPOF method. For detailed discussion, see [14].

First, it can be verified that the eigenvalues of Z are same as the nonzero eigenvalues of $Y^* Y$, whether or not the data are noisy. Then, it is known [18] that the first-order variation in the poles is given by

$$\delta z_i = q_i \delta (Y^*_i Y_i) p_i / q_i^H p_i$$

(27)

where δ is the first-order differential operator and p_i and q_i are, respectively, the right and the left eigenvectors of the noiseless $Y^*_i Y_i$. So p_i (see (11)) is the ith column of Z^*, and q_i is the ith column of Z^H. Therefore, $q_i^H p_i = 1$.

Secondly, it can be shown [13]-[14] that

$$q_i^H \delta Y_i Y_i^* p_i = - q_i^H Y_i^* \delta Y_i Y_i^* p_i.$$

(28)

Note that Y_i^* is a truncated pseudoinverse of Y_i in the noisy data case. From (27) and (28), one can obtain the following after some algebraic manipulations:

$$\delta z_i = (1/b_i) r_i^H (\delta Y_i - z_i \delta Y_i) p_i,$$

(29)

where r_i is the ith row of Z_i^*, and

$$\delta Y_i = \begin{bmatrix} n_0 & n_1 & \cdots & n_{L-1} \\ \vdots & \ddots & \vdots & \vdots \\ n_{N-L} & n_{N-L} & \cdots & n_{N-2} \\ n_{L} & n_{L} & \cdots & n_{L-1} \end{bmatrix},$$

(30)

$$\delta Y_2 = \begin{bmatrix} n_1 & n_2 & \cdots & n_L \\ n_{L} & n_{L} & \cdots & n_{L-1} \end{bmatrix}.$$

(31)

Finally, it can be shown from (29)-(31) that if $\{n_i; i = 0, \cdots, N - 1\}$ are white with variance equal to σ^2, then the first-order perturbation variances are

$$E[|\delta z_i|^2] = \sigma^2 |b_i|^2 \sum_{k=1}^{N} |C_{i,k} - z_i C_{i,k+1}|^2$$

(32)

$$E[|\delta b_i|^2] = \sigma^2 \sum_{k=1}^{N} \left(|C_{i,k} - z_i C_{i,k+1}|/b_i z_i \right)^2,$$

(33)

$$E[|\delta c_{i,k}|^2] = \sigma^2 \sum_{k=1}^{N} \left(|C_{i,k} - z_i C_{i,k+1}|/b_i z_i \right)^2$$

(34)

where

$$\sum_{m=1,k-1}^{m=k-L-1} f_{i,k,m} (L - N - L) \quad \sum_{m=1}^{m=k-L-1} f_{i,k,m} (L + 1 \leq k \leq N - L + 1)$$

$$\sum_{m=1}^{m=N-L} f_{i,k,m} (N - L \leq k \leq L + 1)$$

$$\sum_{m=0}^{m=N-L} f_{i,k,m} (L, N - L + 2 \leq k \leq N)$$

$$f_{i,k,m} = r_{m,m}^* p_{i,k-m}$$

(35)

in which $r_{m,m}^*$ is the mth element of the row vector r_{i}^H and $p_{i,m}$ is the mth element of the column vector p_i.

REFERENCES

Yingbo Hua (S’86–M’89) was born in Jiangsu, China, on November 26, 1960. He received the B.S. degree in control engineering from Nanjing Institute of Technology, Nanjing, Jiangsu, China, in 1982, and the M.S. and Ph.D. degrees in electrical engineering from Syracuse University, Syracuse, NY, in 1983 and 1988, respectively.

He was a Graduate Teaching Assistant from 1984 to 1985, a Graduate Fellow from 1985 to 1986, and a Graduate Research Assistant from 1986 to 1988, all at Syracuse University. He was an Instructor of a graduate course at Syracuse University in the summer of 1988. Since September 1988, he has been a Research Associate at Syracuse University. His research interests include various aspects of signal processing and system identification.

Tapan K. Sarkar (S’69–M’76–SM’81) was born in Calcutta, India, on August 2, 1948. He received the B.Tech. degree from the Indian Institute of Technology, Kharagpur, India, in 1969, the M.Sc.E. degree from the University of New Brunswick, Fredericton, Canada, in 1971, and the M.S. and Ph.D. degrees from Syracuse University, Syracuse, NY, in 1975.

From 1975–1976 he was with the TACO division of General Instruments Corporation. He was with the Rochester Institute of Technology, Rochester, NY, from 1976–1985. He was a Research Fellow at the Gordon McKay Laboratory, Harvard University, Cambridge, MA, from 1977–1978. He is now a Professor in the Department of Electrical and Computer Engineering, Syracuse University, Syracuse, NY. His current research interests deal with numerical solution of operator equations arising in electromagnetics and signal processing with application to system design. He obtained one of the “best solution” awards in May 1977 at the Rome Air Development Center (RADC) Spectral Estimation Workshop. He has authored and co-authored over 154 journal articles and conference papers. He has written chapters in eight books.

Dr. Sarkar is a registered Professional Engineer in the State of New York. He received the Best Paper Award of the IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY in 1979. He was an Associate Editor for feature articles of the *IEEE Antennas and Propagation Society Newsletter*. He was the Technical Program Chairman for the 1988 IEEE Antennas and Propagation Society International Symposium and URSI Radio Science Meeting. He is an Associate Editor for the IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY and for the Journal of Electromagnetic Waves and Applications. He has been appointed U.S. Research Council Representative to many URSI General Assemblies. He is also the Vice Chairman of the Intercommission Working Group of International URSI on Time Domain Metrology. He is a member of Sigma Xi and International Union of Radio Science Commissions A and B.