Statistical Extraction and Modeling of 3-D Inductance with Spatial Correlation

Jacob Relles, Muhua Ngan, E. Tlelo-Cuautle, Sheldon X.-D. Tan
Department of Electrical Engineering
University of California
Riverside, CA 92521

Chao Hu, Wenjian Yu, Yici Cai
Department of Computer Science and Technology
Tsinghua University
Beijing, 100084, China

Abstract — In this paper, we present a novel method for inductance extraction and modeling for interconnects considering process variations. The new method is based on the spectral stochastic method where orthogonal polynomials are used to represent the statistical processes in a deterministic way. Coefficients of the orthogonal polynomials are computed for the inductances. Statistical inductance values are then found using a fast multidimensional Gaussian quadrature method with sparse grid. To further improve the efficiency of the proposed method, a random variable reduction scheme is used. Given the interconnect wire variation parameters, the resulting method can derive the parameterized closed form of the inductance and its variance. We show that both partial and loop inductance variations can be significant given the width and height variations. This new approach can work with any existing inductance extraction tools to produce the variational inductance or impedance models. Experimental results show that our method is orders of magnitude faster than the Monte Carlo method for several practical interconnect structures.

I. INTRODUCTION

It is well accepted that process-induced variations have a huge impact on circuit performance in sub-100nm VLSI technologies [1], [11]. A significant portion of these variations are purely random in nature [8]. As a result, variation-aware design methodologies and statistical computer-aided design (CAD) tools are widely believed to be the key to mitigating some of the challenges for 45nm technologies and beyond [11], [8]. Variational considerations have to be incorporated into every step of the design and verification processes to ensure reliable chips and profitable manufacturing yields.

In this paper, we investigate the impact of geometric variations on the extracted inductance (partial or loop). Parasitic extraction algorithms have been intensively studied in the past to estimate the resistance, capacitance, inductance, and susceptance of 3-D interconnects [10], [6], [7], [19]. Many efficient algorithms like the FastCap [7], FastHenry [6], and FastImp [19] were proposed based using the boundary element method (BEM) or volume discretization methods (for partial element equivalent circuit (PEEC) based inductance extraction [10]). In the nanometer regime, circuit layout will have significant variations, both systematic and random, coming from the fabrication process. Much recent research work has been done under different variational models for capacitance extraction while considering process variations [17], [5], [18], [16]. However, less research have been done for variational inductance extraction in the past.

We propose a new statistical inductance extraction method, called statHenry, based on a spectral stochastic collocation scheme. This approach is based on the Hermite orthogonal polynomial representation of the variational Inductance. statHenry applies the collocation idea where the inductance extraction processes is performed many times in pre-determined sampling positions so that the coefficients of orthogonal polynomials of variational inductance can be computed using the weighted least square method. The number of samplings is $O(m^2)$, where m is the number of variables for the second order Hermite polynomials. If m is large, the approach will lose its efficiency compared to the Monte Carlo method. To mitigate the this problem, a weighted principle factor analysis is performed to reduce the number of variables by exploiting the spatial correlations of variational parameters. Experimental results show that our method is orders of magnitudes faster than the Monte Carlo method with very small errors for several practical interconnect structures. We also show that typical variation for the width and height of wires (10%-30%) can cause significant variation to both partial and loop inductance.

The rest of this paper is organized as follows: Section II presents the statistical inductance extraction problem to be solved, Section III reviews the orthogonal polynomial chaos based stochastic simulation methods, and Section IV presents our new statistical inductance extraction method. Then in Section V we present the experimental results and in Section VI we have our concluding remarks.

II. PROBLEM FORMULATION

For a system with m conductors, we first divide all conductors into b filaments. The resistance and inductance of all filaments are respectively stored in matrices $R_{b \times b}$ and $L_{b \times b}$, each with dimensions $b \times b$. R is a diagonal matrix with its diagonal element

$$R_{ii} = \frac{l_i}{\sigma a_i}$$

where l_i is the length of filament i, σ is conductivity and a_i is the area of the cross section of filament i. L is a dense matrix,

This work is funded in part by NSF grant under No. CCF-0448534, in part by NSF grant under No. OISE-0929699 and in part by National Natural Science Foundation of China (NSFC) grant under No. 60828008, in part by Tsinghua National Laboratory for Information Science and Technology (NTL) Cross-discipline Foundation, in part by UC-MEXUS-CONACYT CN-09-310. E. Tlelo-Cuautle thanks CONACYT for the sabbatical leave grant from INAOE.
\[L_{ij} \text{ can be represented as [6]:} \]
\[L_{ij} = \frac{\mu}{4\pi \alpha_{ij}} \int_{V_i} \int_{V_j} \frac{I_i^L}{|r-r'|} dV_i dV_j \]
(2)
where \(\mu \) is permeability, \(I_i \) and \(I_j \) are unit vectors of the lengthwise direction of filaments \(i \) and \(j \), \(r \) is an arbitrary point in the filament, and \(V_i \) and \(V_j \) are the volumes of filaments \(i \) and \(j \), respectively. Assuming magnetostatically electric fields, the inductance extraction problem is then finding the solution to the discretized integral equation:
\[\left(I_i^L/\sigma \right) + j\omega \sum_{j=1}^{b} \left(\frac{\mu}{4\pi \alpha_{ij}} \int_{V_i} \int_{V_j} \frac{I_j^L}{|r-r'|} dV_i dV_j \right) I_j = \frac{1}{\alpha_i} \int_{a_i} (\Phi_A - \Phi_B) dA \]
(3)
where \(I_i \) and \(I_j \) are the currents inside the filaments \(i \) and \(j \), \(\omega \) is the angular frequency, and \(\Phi_A \) and \(\Phi_B \) are the potentials at the end faces of the filament. Equation (3) can be written in the matrix format as
\[(R + j\omega L) I_b = V_b \]
(4)
where \(I_b \in \mathbb{C}^b \) is the vector of \(b \) filament currents, \(V_b \) is a vector of dimension \(b \) containing the filament voltages. We will first solve for the inductance between one conductor, which we will call the primary conductor, and all others, which we will call the environmental conductors. To do this, we set the voltages of filaments in our primary conductor to unit voltage and voltages of all other filaments to zero. Therefore \(I_b \) can be calculated by solving a system of linear equations. Together with the current conservation (Kirchhoff’s current law) equation
\[M I_b = I_m \]
(5)
on all the filaments, where \(M \) is an adjacent matrix for the filament, and \(I_m \) is the currents of all \(m \) conductors. By repeating this process with each of the \(m \) conductors as the primary conductor, we can obtain \(I_{m,i}, i = [1,...,m] \) vectors which form a \(m \times m \) matrix \(I_p = [I_{m,1}, I_{m,2},...,I_{m,m}] \). Since the voltages of all primary conductors have been set to unit voltage previously, the resistance and inductance can be achieved respectively from the real part and the imaginary part of the inverse matrix of \(I_{m,i} \).

Process variations affecting conductor geometry are reflected by changes in the width and height of the conductors. We ignore the length of the wires as the variations are typically insignificant compared to its magnitude. These variations will make each element in the inductance matrix follow some kinds of random distributions. Solving this problem is done by deriving the random distribution and then effectively computing the mean and variance of the inductances with the given geometric randomness parameters. In this paper, we assume that width and height in each filament \(i \) are disturbed by random variables \(\Delta w_{i,j} \) and \(\Delta h_{i,j} \), which gives us:
\[w_i' = w_i + \Delta w_{i,j} \]
(6)
\[h_i' = h_i + \Delta h_{i,j} \]
(7)
where the size of \(\Delta t \) is a Gaussian distribution \(|\Delta t| \sim N(0,\sigma^2) \). The correlation between random perturbations on each wire’s width and height are governed by an empirical formulation such as the widely used exponential model
\[\gamma(r) = e^{-r^2/\eta} \]
(8)
where \(r \) is the distance between two panel centers and \(\eta \) is the correlation length. The most straightforward method is to use a Monte Carlo (MC) based simulation to obtain distribution, mean, and variance of all these inductances. Unfortunately, the MC method will be extremely time consuming and more efficient statistical approaches are needed.

III. REVIEW OF SPECTRAL STOCHASTIC BASED METHODS

In this section, we briefly review the spectral stochastic or orthogonal polynomial chaos (PC) based stochastic analysis methods.

In the following, \(\xi(\theta) \) is a random variable expressed as a function of \(\theta \), which is the random event. Hermite PC (HPC) utilizes a series of polynomials, which are orthogonal with respect to the Gaussian distribution, to facilitate stochastic analysis [3], [13]. These polynomials are used as an orthogonal basis to decompose a random process.

We note that for Gaussian and log-normal distributions, using Hermite polynomials are the best choice, as they lead to an exponential convergence rate [3]. For distributions which are neither Gaussian nor log-normal, there are other orthogonal polynomials such as Legendre for uniform distributions, Charlier for Poisson distribution, and Krawtchouk for Binomial distribution, etc [2], [12].

To simplify the explanation, only one random variable is considered and the one-dimensional Hermite polynomials are expressed as follows:
\[H_0(\xi) = 1, H_1(\xi) = \xi, H_2(\xi) = \xi^2 - 1, H_3(\xi) = \xi^3 - 3\xi, \ldots \]
(9)
The Hermite polynomials are orthogonal with respect to a Gaussian weighted expectation (the superscript \(n \) is dropped to simplify notation):
\[\langle H_i(\xi), H_j(\xi) \rangle = \delta_{ij} \]
(10)
where \(\delta_{ij} \) is the Kronecker delta and \(\langle \ast, \ast \rangle \) denotes an inner product, defined as:
\[\langle f(\xi), g(\xi) \rangle = \frac{1}{\sqrt{(2\pi)}} \int f(\xi) g(\xi) e^{-\frac{\xi^2}{2}} d\xi. \]
(11)
Given a random variable \(v(\xi) \), where \(\xi = [\xi_1,\ldots,\xi_n] \) denotes a vector of orthonormal Gaussian random variables with zero mean, the random variable can be approximated using a truncated Hermite PC expansion: [3]
\[v(\xi) \approx \sum_{k=0}^{n} a_k H_k^v(\xi), \]
(12)
where \(n \) is the number of independent random variables, \(H_k^v(\xi) \) are \(n \)-dimensional Hermite polynomials, and \(a_k \) are the deterministic coefficients. The number of terms, \(P \), is given by
\[P \approx \sum_{k=0}^{n} \frac{(n-1+k)!}{k!(n-1)!}. \]
(13)
where p is the order of the Hermite PC. According to the Galerkin method, the truncation error is minimized [3] when

$$<v(\xi),H_k(\xi)> = \sum_{j=1}^{p} a_j H_j(\xi) \cdot H_k(\xi) > (14)$$

Based on the orthogonality of Hermite polynomials, the right part of the above equation equals zero when $j \neq k$. The coefficients, a_k, can then be represented as:

$$a_k(t) = \frac{<v(\xi),H_k(\xi)>}{<H_k^2(\xi)>}, \forall k \in \{0, \ldots , P\}. (15)$$

The key issue is to compute the coefficients $a_k(t)$ with an efficient numerical integration method, which is discussed in the next section.

IV. NEW STATISTICAL INDUCTANCE EXTRACTION METHOD – STATHENRY

In this section, we present the new statistical inductance extraction method – statHenry.

The new method is based on the efficient multi-dimensional numerical Gaussian quadrature. We will first review the numerical Gaussian quadrature method, followed by the improved Smolyak quadrature.

A. Gaussian quadrature technique

The Gaussian quadrature method is an efficient numerical method for computing the definite integral of a function [4]. Using this method, we can compute the coefficients $a_k(t)$ in (15). Next, we will review this method, which uses the Hermite polynomial shown below.

Our goal is to determine the numerical solution to the integral equation $<x(\xi),H_j(\xi)>$. In our problem, this is a one-dimensional numerical quadrature problem based on Hermite polynomials [4]. Thus, we have

$$<x(\xi),H_k(\xi)> = \frac{1}{\sqrt{(2\pi)}} \int x(\xi)H_k(\xi)e^{-\frac{\xi^2}{2}} d\xi = \sum_{i=0}^{p} x(\xi_i)H_k(\xi_i) w_i (16)$$

Here we have only a single random variable, $\xi = \{\xi_0, \xi_1, \ldots, \xi_p\}$, and w_i are Gaussian Hermite quadrature abscissas (quadrature points) and weights.

The Quadrature rule states that if we select the roots of the Pth Hermite Polynomial as the quadrature points, the quadrature is exact for all polynomials of degree $2P-1$ or less for (16). This is called $(P-1)$-level accuracy of the Gaussian-Hermite quadrature.

For multiple random variables, a multi-dimensional quadrature is required. The traditional way of computing a multi-dimensional quadrature is to use a direct tensor product based on the one dimensional Gaussian Hermite quadrature abscissas and weights [9]. With this method, the number of quadrature points needed for n-dimensions at level P is about $(P+1)^n$, which is well known as the curse-of-dimensionality.

B. Sparse grid technique

Smolyak quadrature [9], also known as sparse grid quadrature, is used as an efficient method to reduce the number of quadrature points. Let us define a one-dimensional sparse grid quadrature point set $\Theta_n^{m} = \{y_1, y_2, \ldots, y_P\}$, which uses $P+1$ points to achieve degree $2P+1$ of exactness. The sparse grid for an n-dimensional quadrature at degree P chooses points from the following set:

$$\Theta_{n}^{m} = \bigcup_{P+1 \leq |\vec{r}| \leq P+n} (\Theta_1^{m} \times \cdots \times \Theta_n^{m}) (18)$$

where $|\vec{r}| = \sum_{j=1}^{n} r_j$. The corresponding weight is:

$$w_{j_1 \ldots j_n} = (-1)^{P+n-|\vec{r}|} \frac{n-1}{n+P-|\vec{r}|} \prod_{m=1}^{n} w_{j_m} (19)$$

where $w_{j_1 \ldots j_n} = \frac{n-1}{n+P-|\vec{r}|}$ is the combinatorial number and w is the weight for the corresponding quadrature points. It has been shown that interpolation on a Smolyak grid ensures a bound for the mean-square error [9]

$$|E_P| = O(N_{P}(\log N_{P})^{(r+1)(n-1)}),$$

where N_{P} is the number of quadrature points and k is the order of the maximum derivative that exist for the delay function. The number of quadrature points increases as $O\left(\frac{1}{\Delta P}\right)$.

It can be shown that a sparse grid of at least level P is required for an order P representation. The reason is that the approximation contains order P polynomials for both $x(\xi)$ and $H_j(\xi)$. Thus, there exists $x(\xi)H_j(\xi)$ with order $2P$, which requires a sparse grid of at least level P with an exactness degree of $2P+1$.

Therefore, level 1 and level 2 sparse grids are required for linear and quadratic models, respectively. The number of quadrature points is about $2n$ for the linear model, and $2n^2$ for the quadratic model. The time cost is about the same as the Taylor-conversion method, while keeping the accuracy of homogenous chaos expansion.

In addition to the sparse grid technique, we also employ several accelerating techniques. Firstly, when n is too small, the number of quadrature points for sparse grid may be larger than that of direct tensor product of a Gaussian quadrature. For example, if there are only 2 variables, the number is 5 and 14 for level 1 and 2 sparse grid, compared to 4 and 9 for direct the tensor product. In this case, the sparse grid will not be used. Secondly, The set of quadrature points (18) may contain the same points with different weights. For example, the level 2 sparse grid for 3 variables contain 4 instances of the point $(0,0,0)$. Combining these points by summing the weights reduces the computational cost of $x(\gamma)$.

C. Variable decoupling and reduction

Even with sparse grid quadrature, the number of sampling points still grow quadratically with the number of variables. As a result, we should further reduce the number of variables by exploiting the spatial correlations of the given random width and height parameters of wires.

We start with independent random variables as the input of the stochastic method. Since the height and width
variable of all wires are correlated, this correlation should be eliminated before removed before using the spectral stochastic method. We first present following result as our theoretical basis for decoupling the correlation of those variables [15].

Theorem 1: For a set of zero-mean Gaussian distributed variables ξ_i whose covariance matrix is Δ, if there is a matrix L satisfying $\Delta_n = LL^T$, then ξ^* can be represented by a set of independent standard normal distributed variables ξ_i as $\xi^* = L\xi$.

Note that the solution for decoupling is not unique. For example, Cholesky decomposition can be used to seek L since the covariance matrix Δ is always a semi-positive definite matrix. However Cholesky decomposition cannot reduce the number of variables. Principle factor analysis (PFA) [5] can substitute Cholesky decomposition when variable reduction is needed. Eigen-decomposition on the covariance matrix yields:

$$\Delta_n = LL^T, \quad L = (\sqrt{\lambda_1}e_1, \ldots, \sqrt{\lambda_n}e_n)$$ (20)

where $\{\lambda_i\}$ are eigenvalues in order of descending magnitude, and $\{e_i\}$ are corresponding eigenvectors. PFA reduces the number of components in ξ by truncating L using the first k items.

The error of PFA can be controlled by k: bigger k leads to a more accurate result. PFA is efficient, especially when the correlation length is large. In our experiments, we set the correlation length is 8 times of width of wires. As a result, PFA can reduce the number of variables from 40 to 14 with an error of about 1% in an example with 20 parallel wires.

D. Variable reduction by weighted PFA

Principle factor analysis for variable reduction considers only the spatial correlation between wires, while ignoring the influence of the inductance itself. One idea is to consider the importance of the outputs during the reduction process. We follow the recently proposed weighted PFA (wPFA) technique to seek better variable reduction efficiency [14].

If a weight is defined for each physical variable ξ_i, to reflect its impact on the output, then a set of new variables ξ_i^* are formed:

$$\xi_i^* = W\xi_i$$ (21)

where $W = diag(w_1, w_2, \ldots, w_n)$ is a diagonal matrix of weights. As a result, the covariance matrix of ξ_i^*, $\Delta_n(\xi_i^*)$, now contains the weight information and performing PFA on $\Delta_n(\xi_i^*)$ leads to the weighted variable reduction. Specifically, we have

$$\Delta_n(\xi^*) = E(W\xi_i^*(W\xi_i^*)^T) = W\Delta_n(\xi)W^T$$ (22)

and denote its eigenvalues and eigenvectors by $\{\lambda_i^*\}$ and $\{e_i^*\}$. Then, the variables ξ_i can be approximated by the linear combination of a set of independent dominant variables ξ^*:

$$\xi = W^{-1}\xi^* \approx W^{-1}\sum_{i=1}^{k}\sqrt{\lambda_i^*}e_i^*\xi_i^*$$ (23)

For inductance extraction, we take the partial inductance of the deterministic structure as the weight, since this normal structure reflects an approximate equality of inductance compared with the variational structure. By performing wPFA in the same example with 20 parallel wires, 40 variables can now be reduced to 8 rather than 14 when using PFA (more details in the experimental results).

E. New extraction algorithm: statHenry

After introducing all the important pieces from related works, we are now ready to present our new algorithm – statHenry. Fig. 1 is a flowchart of the proposed algorithm.

Algorithm: statHenry

Input: Wires with variational width and heights
Output: The Hermite polynomial coefficients of the partial or loop inductance values of the wires, $L(\xi)$

1. Perform variable reduction based on weighted PFA.
2. Generate the n-dimensional Smolyak quadrature point sets of second order Θ_n^2 and corresponding weight set w_n.
3. For $i = 1$ to size(Θ_n^2)
4. Perform fastHenry for each sample.
5. end
6. Compute the coefficients of Hermite polynomials for the partial or loop inductance values $d(\xi)$

Fig. 1. The proposed statHenry algorithm.

V. EXPERIMENTAL RESULTS

In this section, we compare the results of the proposed statHenry method against the Monte Carlo method and a simple orthogonal polynomial based spectral stochastic collocation method with the sparse grid technique but without variable reduction, called HPC. The proposed method statHenry has been implemented in Matlab 8.0. All the experimental results were obtained using a computer with a 2.66Ghz Intel Core 2 Duo and 4GB memory running Microsoft Windows XP operating system.

TABLE I
ACCURACY COMPARISON (MEAN AND VARIANCE VALUES OF INDUTANCES) AMONG MC, HPC AND statHenry.

<table>
<thead>
<tr>
<th>Test cases</th>
<th>inductances</th>
<th>MC(mean)</th>
<th>HPC(mean)</th>
<th>statHenry(mean)</th>
<th>MC(stand)</th>
<th>HPC(stand)</th>
<th>statHenry(stand)</th>
<th>err (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 parallel wires</td>
<td>L11</td>
<td>0.0179</td>
<td>0.0179</td>
<td>0.0179</td>
<td>4.95 × 10⁻⁴</td>
<td>4.91 × 10⁻⁴</td>
<td>4.91 × 10⁻⁴</td>
<td>0.81</td>
</tr>
<tr>
<td>2 parallel wires</td>
<td>L12</td>
<td>0.0275</td>
<td>0.0275</td>
<td>0.0275</td>
<td>9.81 × 10⁻⁴</td>
<td>9.73 × 10⁻⁴</td>
<td>9.73 × 10⁻⁴</td>
<td>0.81</td>
</tr>
<tr>
<td>10 parallel wires</td>
<td>L11</td>
<td>0.0179</td>
<td>0.0179</td>
<td>0.0179</td>
<td>4.94 × 10⁻⁴</td>
<td>4.93 × 10⁻⁴</td>
<td>4.92 × 10⁻⁴</td>
<td>0.40</td>
</tr>
<tr>
<td>10 parallel wires</td>
<td>L12</td>
<td>0.0275</td>
<td>0.0275</td>
<td>0.0275</td>
<td>9.75 × 10⁻⁴</td>
<td>9.76 × 10⁻⁴</td>
<td>9.95 × 10⁻⁴</td>
<td>0.10</td>
</tr>
<tr>
<td>20 parallel wires</td>
<td>L11</td>
<td>0.0179</td>
<td>–</td>
<td>0.0179</td>
<td>4.89 × 10⁻⁴</td>
<td>–</td>
<td>4.92 × 10⁻⁴</td>
<td>0.61</td>
</tr>
<tr>
<td>20 parallel wires</td>
<td>L12</td>
<td>0.0275</td>
<td>–</td>
<td>0.0275</td>
<td>9.71 × 10⁻⁴</td>
<td>–</td>
<td>9.75 × 10⁻⁴</td>
<td>0.41</td>
</tr>
</tbody>
</table>
For our experiment, we set up three test casts to examine our algorithm: 2 parallel wires, 10 parallel wires and 20 parallel wires. In all three models, all of the wires have a width of 1μm, length of 6μm, and pitch between them of 1μm.

We set the standard deviation as 10% of the wire widths and wire heights and the η, the correlation length, to 8μm to indicate a strong correlation.

First, we compare the accuracy of the three methods in terms of the mean and standard deviations of loop/partial inductances. The results are summarized in Table I. In the table we report the results from three test cases as mentioned. In each case, we report the results for partial self inductance on wire 1 (L_{11p}) and loop inductance between wire 1 and 2 (L_{12l}). Columns 3 to 5 are the mean values for the Monte-Carlo method (MC), simple orthogonal polynomial based method (HPC) and the new method respectively. Columns 6 to 8 report the standard deviations of the three methods respectively. The last column shows the errors of statHenry against the MC method. We do not show the error for mean values as the three methods give almost identical results. The MC results comes from 10,000 runs. For 20 parallel wires, the HPC method generate too many samples to be meaningful. So we do not report the corresponding results.

It can be seen that statHenry is very accurate for both mean and standard deviation. The errors are less than 1% in all cases for standard deviation with almost no error for mean values. We observe that a 10% standard deviation for the width and height results in variations of 3% to 4% for the partial and loop inductances, which is significant for timing. As the variation due to process imperfections grow as the technology advances, we can see that inductance variation will also grow.

As expected, the distributions for the partial and loop inductance of the three methods are almost overlapping. The results of HPC and statHenry are obtained by running 10,000 runs on the resulting Hermite polynomials.

Next, we show the CPU time speedup of the proposed method. The results are summarized in Table II. It can be seen that statHenry can be about two orders of magnitude faster than the Monte Carlo method. We notice that with more wires, the speedup goes down. This is expected as more wires leads to more variables, even after the variable reduction; as the number of samples in the collocation method are $O(m^2)$ for second-order Hermit polynomials, where m is the number of variables. As a result, more samplings are needed to compute the coefficients while Monte-Carlo has the fixed number of samplings (10,000 for all cases).

Table III shows the reduction effects using PFA and wPFA for the 10 parallel wire case under the same errors. We can see that with weighted PFA (wPFA), we can achieve better reduction and thus better efficiency for the entire extraction algorithm.

Finally, we study the variational impacts of partial and loop inductances under different variabilities for width and height using statHenry and the MC method.

Table: CPU Runtime Comparison Among MC, HPC and statHenry.

<table>
<thead>
<tr>
<th>n</th>
<th>MC (s)</th>
<th>HPC (s)</th>
<th>Speedup (vs MC)</th>
<th>statHenry (s)</th>
<th>Speedup (vs MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>655.8</td>
<td>2.80</td>
<td>234.3</td>
<td>2.80</td>
<td>234.3</td>
</tr>
<tr>
<td>10</td>
<td>3511.4</td>
<td>265.0</td>
<td>13.3</td>
<td>52.3</td>
<td>67.5</td>
</tr>
<tr>
<td>20</td>
<td>6312.3</td>
<td>–</td>
<td>–</td>
<td>174.3</td>
<td>36.2</td>
</tr>
</tbody>
</table>

Table: Reduction Effects of PFA and wPFA for 20 Parallel Wire Case.

<table>
<thead>
<tr>
<th># of variables</th>
<th>PFA</th>
<th>wPFA</th>
<th>err</th>
</tr>
</thead>
<tbody>
<tr>
<td>before reduction</td>
<td>14</td>
<td>8</td>
<td><1%</td>
</tr>
<tr>
<td>after reduction</td>
<td>14</td>
<td>8</td>
<td><1%</td>
</tr>
<tr>
<td># of collocation points</td>
<td>435</td>
<td>153</td>
<td>–</td>
</tr>
</tbody>
</table>
TABLE IV
VARIATION IMPACTS ON INDUCTANCES USING statHenry.

<table>
<thead>
<tr>
<th>std</th>
<th>partial (mean)</th>
<th>partial (std)</th>
<th>std in (%)</th>
<th>loop(mean)</th>
<th>loop(std)</th>
<th>std in (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>0.0179</td>
<td>0.0275</td>
<td>2.2%</td>
<td>0.0009</td>
<td>3.2%</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>0.0180</td>
<td>0.0277</td>
<td>5.6%</td>
<td>0.0020</td>
<td>7.2%</td>
<td></td>
</tr>
<tr>
<td>30% (MC)</td>
<td>0.0181</td>
<td>0.0279</td>
<td>8.8%</td>
<td>0.0031</td>
<td>11.1%</td>
<td></td>
</tr>
</tbody>
</table>

10 parallel wire case. As we can see, the resulting distributions of inductances becomes more skewed with larger variations, which means that a first order approximation will not work and a second or higher order approximation is required for better accuracy. Note that we only report the MC results for 30% cases, as smaller variational cases will work better for statHenry.

The variation statistics are summarized in Table IV. Here we report the results for standard deviations from 10% to 30% for width and height. Considering a typical 3σ range for variation, a 30% standard deviation means that width and height changes can reach 90% of their values. It can be seen that with the increasing variations of width and height (from 10% to 30%), the standard deviation of both partial and loop inductance range between 2.2% and 11.1%, which can significantly impact the noise and delay of the wires. In the last row of the table, we also show the results for 30% variation case from the MC method for comparison. From this, we can see that the results of statHenry still agree closely with MC.

VI. CONCLUSION

In this paper, we have proposed a new statistical inductance extraction method, called statHenry, for three-dimensional interconnects considering process variations. This new method is based on the spectral stochastic collocation method where orthogonal polynomials are used to represent the variational geometrical parameters in a deterministic way. Statistical inductance values are then computed using a fast multi-dimensional Gaussian quadrature method with sparse grid technique. Then, to further improve the efficiency of the proposed method, a random variable reduction scheme based on weighted principle factor analysis is applied. Experimental results show that our method is orders of magnitudes faster than the Monte Carlo method with very small errors for several practical interconnect structures. We also show that both partial and loop inductance variations can be significant for the typical 10%-30% standard variations of width and heights of wires.

REFERENCES