Online Temporal Calibration for Camera-IMU Systems: Theory and Algorithms

Mingyang Li and Anastasios I. Mourikis
Dept. of Electrical Engineering, University of California, Riverside
E-mail: mli@ee.ucr.edu, mourikis@ee.ucr.edu

Abstract—When fusing visual and inertial measurements for motion estimation, each measurement’s sampling time must be precisely known. This requires knowledge of the time offset that inevitably exists between the two sensors’ data streams. The first contribution of this work is an online approach for estimating this time offset, by treating it as an additional state variable to be estimated along with all other variables of interest (IMU pose and velocity, biases, camera-to-IMU transformation, feature positions). We show that this approach can be employed in pose tracking with mapped features, in SLAM, and in visual-inertial odometry. The second main contribution of this paper is an analysis of the identifiability of the time offset between the visual and inertial sensors. We show that the offset is locally identifiable, except in a small number of degenerate motion cases, which we characterize in detail. These degenerate cases are either (i) cases known to cause loss of observability even when no time offset exists, or (ii) cases that are unlikely to occur in practice. Our simulation and experimental results validate these theoretical findings, and demonstrate that the proposed approach yields high-precision, consistent estimates, in scenarios involving either known or unknown features, with both constant and time-varying offsets.

I. INTRODUCTION

Autonomous vehicles moving in 3D, such as aerial vehicles or ground robots on uneven terrain, require accurate 3D pose estimates. We here focus on vision-aided inertial navigation methods, which provide such estimates by fusing measurements from a camera and an inertial measurement unit (IMU). In recent years, several algorithms of this kind have been proposed, tailored for different applications. For instance, if features with known coordinates are available, map-based localization algorithms can be used to provide absolute-pose estimates (e.g., (Wu et al., 2005; Trawny et al., 2007)). In an unknown environment, simultaneous localization and mapping (SLAM) methods can be used for jointly estimating the vehicle’s 3D motion and the positions of visual landmarks (e.g., (Jones and Soatto, 2011; Hesch et al., 2012)). Finally, if estimates for the vehicle’s motion are needed but no map building is required, visual-inertial odometry methods can be employed (e.g., (Mourikis and Roumeliotis, 2007; Li and Mourikis, 2012)).

For the estimation algorithms to perform well in any of these cases, both the spatial and the temporal relationship between the camera and IMU must be accurately modeled. The first of these problems, often termed extrinsic sensor calibration, has been addressed by several authors (see, e.g., (Mirzaei and Roumeliotis, 2008; Kelly and Sukhatme, 2010; Jones and Soatto, 2011; Weiss et al., 2012b)). By contrast, the problem of temporal calibration between the data streams of the camera and the IMU has largely been left unexplored, and is the main focus of this work.

To enable the processing of the sensor measurements in an estimator, a timestamp is typically obtained for each camera image and IMU sample. This timestamp is taken either from the sensor itself, or from the operating system (OS) of the computer receiving the data. These timestamps, however, are typically inaccurate. Due to the time needed for data transfer, sensor latency, and OS overhead, a delay – different for each sensor – exists between the actual sampling of a measurement and its timestamp. Additionally, if different clocks are used for timestamping (e.g., on different sensors), these clocks may suffer from clock skew. As a result, an unknown time offset, \(t_d \), typically exists between the timestamps of the camera and the IMU. If this time offset is not estimated and accounted for, it will introduce unmodeled errors in the estimation process, and reduce its accuracy.

With the exception of the work of (Kelly and Sukhatme, 2010), discussed in Section II, previous literature on vision-aided inertial navigation has not addressed the problem of estimating \(t_d \). Presumably, algorithm developers either determine this offset using hardware-specific knowledge, or develop offline methods for estimating \(t_d \) on a case-by-case basis, or assume that \(t_d \) is sufficiently small so that it can be ignored. However, these solutions are not general enough, and in the case where \(t_d \) is varying over time (e.g., due to clock skew) they can lead to eventual failure of the estimator. In contrast to these methods, we here present a methodology for estimating \(t_d \) online during vision-aided inertial navigation, and a theoretical analysis of its properties.

Specifically, the first contribution of this work is a formulation for the online estimation of the time offset in extended Kalman filter (EKF)-based algorithms. Our approach relies on explicitly including \(t_d \) in the EKF state vector, and estimating it concurrently with all other states of interest. This method is applicable in both known and unknown environments (i.e., in both map-based estimation, and in SLAM/visual-inertial odometry), and with both feature-based and pose-based EKF formulations. We here present EKF estimators for all these cases. These estimators jointly estimate (i) the IMU state, comprising the IMU position, velocity, orientation, and biases, (ii) the transformation between the camera and IMU frames, (iii) the time offset between
the sensors’ data streams, and (iv) the positions of visual features, when EKF-SLAM is performed. Compared to the “standard” algorithms, which require the time offset to be perfectly known in advance, the proposed approach only incurs a minimal computational overhead, as it only requires one additional scalar variable to be included in the filter state.

The second main contribution of this work is the analysis of the identifiability of the time offset between the camera and IMU. In particular, we present the analysis for the case where the time offset, feature positions, camera-to-IMU transformation, and IMU biases are all unknown, and need to be estimated along with the IMU trajectory. For this (most general) scenario, we prove that the time offset t_d is locally identifiable in general trajectories. Moreover, we characterize the critical trajectories that cause loss of identifiability, and show that these are either (i) cases that are known to be degenerate even when t_d is perfectly known (e.g., constant-velocity motion), or (ii) cases that are unlikely to occur in practice. Thus, including t_d in the estimated state vector does not introduce new, practically significant critical trajectories for the overall system’s observability.

These theoretical results have direct practical implications. They prove that, when the time offset between the camera and IMU is not known in advance, it can be estimated online by the proposed EKF-based algorithms, together with all the other quantities of interest. The identifiability properties of t_d guarantee that this estimation will be successful, even if t_d is drifting over time. Our experimental and simulation results confirm that the proposed methods yield high-precision, consistent state estimates, in scenarios involving either known or unknown features, with both constant and time-varying offsets. Importantly, we show that the accuracy obtained when t_d is estimated online is almost indistinguishable from the precision we would obtain if t_d was perfectly known in advance. These results, together with the fact that the inclusion of t_d in the filter’s state vector causes minimal increase in the estimator’s complexity, demonstrate the practical advantages of the online temporal calibration of camera-IMU systems.

II. RELATED WORK

Sensor latency is a common problem, and therefore the topic of state estimation with time-delayed and time-offset measurements has been studied in several contexts. The vast majority of existing approaches focus on the problem of using delayed sensor measurements for estimation, when the delay is perfectly known in advance (see, e.g., (Bar-Shalom, 2002; Zhang et al., 2005; Bak et al., 1998), and references therein). The vision-aided inertial navigation method of (Weiss et al., 2012a) belongs to this category. Moreover, a number of methods have been proposed for the case where the time offset is only approximately known (Julier and Uhlmann, 2005; Choi et al., 2009). However, all these algorithms use the time offset between the sensors as an input: they do not attempt to estimate it, or to improve a prior estimate using additional data, and are thus not applicable to the problem we address.

To the best of our knowledge, the first work addressing the problem of time-offset estimation in camera-IMU systems in a principled manner is that of (Kelly and Sukhatme, 2010). In that work, rotation estimates from each individual sensor are first computed, and then temporally aligned via batch ICP-like registration in the space of rotations. This technique can be applied to sensors beyond just cameras and IMUs (Tungadi and Kleeman, 2010). While this approach addresses the presence of a time offset and its estimation in a rigorous manner, it has two limitations. First, being offline in nature, it cannot operate in the presence of time-varying time offsets. Moreover, since only the rotation measurements are used, this method does not utilize all the available measurement information.

We note that the standard way to estimate the time-shift between two signals is by determining the peak of the cross-correlation between them (see, e.g. (Giovanni and Scarano, 1993; Fertner and Sjolund, 1986) and references therein). This technique could be used to estimate the time offset between the camera and IMU, by correlating the rotation estimates computed by the two sensors. Moreover, a number of approaches exist that determine the timing between sensors using low-level data, such as direct measurements of network response times (see, e.g., (Harrison and Newman, 2011) and references therein). Conceivably, any of these methods could be used online, in parallel to the state estimator, to provide estimates for the time offset t_d. To deal with time-varying offsets, the methods could run periodically. However, this would lead to a more complex implementation than the solution proposed in this work, and would not be able to properly model the uncertainty of t_d in the estimator.

In contrast to the methods discussed above, the approach proposed in our work allows for online estimation of t_d, by treating it as an additional state to be estimated. This idea, which has recently also been proposed in the context of GPS-based navigation (Skog and Haendel, 2011), makes it possible to use all the measurements from the camera, gyroscope, and accelerometer in a tightly-coupled formulation. Moreover, it models the uncertainty in the estimate of t_d, and its impact on the accuracy of motion estimation, in a natural way via the EKF covariance matrix. The formulation of the EKF-based estimators for online temporal calibration first appeared in an earlier conference version of this paper (Li and Mourikis, 2013a). Compared to that publication, we here present additional experimental and simulation results, as well as a detailed analysis of the time offset’s identifiability (Section VI). To the best of our knowledge, this is the first time such an analysis has been presented for 3D motion estimation.

Note that, even though the observability properties of vision-aided inertial navigation have been studied in great detail in the past, all prior work assumes perfect knowledge of the time offset between sensors (Mirzaei and Roumelit-
IMU measurements.

offset

[54x73]t

[54x109]unless additional, external state information is available. By the sensors. However, these latencies cannot be determined to identify the time offset.

t was actually captured at time t with timestamp ζ of a quantity.

[54x543]d

are offset by d t a and b d t a. In this case the IMU data arrives with a latency t a, while the camera data have a latency t b, both of which are unknown. Since t a and t b are different, the estimator receives measurements that were recorded simultaneously (e.g., the first IMU and camera measurement) with timestamps that are offset by t d = t a − t b.

III. TIME-OFFSET DEFINITION

Consider a system comprising a camera and IMU, in which each sensor provides measurements at a constant frequency, known at least to a good approximation. As described in Section I, an unknown time offset, t d, generally exists between the two sensors’ reported timestamps. Fig. 1 illustrates how a time offset can arise due to the difference in the sensors’ latency, but t a may also arise due to synchronization errors, missed data, and clock skew. Note that, depending on the system at hand, t d may have a positive or negative value. For instance, if the offset is caused due to sensor latency, then t d will be positive when the IMU has a longer latency than the camera, and negative in the opposite case.

In our formulation, we use the “IMU time” as the time reference by convention. Therefore, ζ (t) denotes the value of a quantity ζ at the time instant the IMU measurement with timestamp t was recorded. On the other hand, if an image with timestamp t is received from the camera, this image was actually captured at time t + t d. We point out that in our formulation it is possible (as proven in Section VI) to identify the time offset t d, but not the individual latencies of the sensors. However, these latencies cannot be determined unless additional, external state information is available. By using the “IMU time” as the time reference we circumvent this difficulty, and obtain equations that only involve the time offset t d, which we can estimate using only the camera and IMU measurements.

IV. MAP-BASED POSE ESTIMATION

A. State vector formulation

We first consider the case of pose estimation in an environment containing features with known 3D coordinates. Our objective is to estimate the 3D pose of the system with respect to a global coordinate frame, {G}, while concurrently performing temporal and spatial calibration between the two sensors. To this end we employ an EKF estimator, whose state vector comprises the IMU state, the time offset t d, as well as the transformation, C T I, between the IMU frame, {I}, and the camera frame, {C}:

\[
x(t) = [x^T(t) \quad \tilde{\mathbf{G}}_I^T \quad \mathbf{C}_I^T \quad \tilde{\mathbf{p}}_I^T \quad t_d]^T
\]

where \(x_I(t) \) is the IMU state at time t, and \(\tilde{\mathbf{G}}_I^T \) is described by the unit quaternion \(\tilde{\mathbf{q}} \) and the translation vector \(\mathbf{C}_I \).

Following standard practice, we define the IMU state as the 16 × 1 vector:

\[
x_I = [\mathbf{I}_G^T \quad \mathbf{G}_I^T \quad \mathbf{C}_I^T \quad \mathbf{b}_g^T \quad \mathbf{b}_a^T]^T
\]

where the 4 × 1 unit quaternion \(\tilde{\mathbf{q}} \) describes the rotation from the global frame to the IMU frame, \(\mathbf{G}_I \) and \(\mathbf{C}_I \) are the IMU’s position and velocity expressed in the global frame, and \(\mathbf{b}_g \) and \(\mathbf{b}_a \) are the IMU’s gyroscope and accelerometer biases. These are modeled as random walk processes driven by zero-mean white Gaussian noise vectors \(\mathbf{n}_{wg} \) and \(\mathbf{n}_{wa} \), respectively. Using (2), the filter state vector becomes:

\[
x = [\mathbf{I}_G^T \quad \mathbf{G}_I^T \quad \mathbf{C}_I^T \quad \mathbf{b}_g^T \quad \mathbf{b}_a^T \quad \mathbf{c}_G^T \quad \mathbf{c}_I^T \quad \tilde{\mathbf{p}}_I^T \quad t_d]^T
\]

Based on this state vector, we obtain the following 22 × 1 error-state vector for the EKF:

\[
\tilde{x} = \begin{bmatrix}
\tilde{\mathbf{q}}
& \tilde{\mathbf{G}}_I^T
& \mathbf{C}_I^T
& \mathbf{b}_g^T
& \mathbf{b}_a^T
& \tilde{\mathbf{v}}_I^T
& \mathbf{C}_I^T
& \mathbf{b}_g^T
& \mathbf{b}_a^T
& \tilde{\mathbf{q}}
& \tilde{\mathbf{p}}_I^T
& t_d
\end{bmatrix}^T
\]

where for the position, velocity, and bias states, as well as for the time offset t d, the standard additive error definition has been used (e.g., \(\mathbf{G}_q = \mathbf{G}_q + \mathbf{G}_q \)). On the other hand, for the orientation errors we use a minimal 3-dimensional representation, defined by the equations (Li and Mourikis, 2013b; Li and Mourikis, 2012):

\[
\tilde{I}_G^T \tilde{\mathbf{q}} \simeq \tilde{\mathbf{q}} \tilde{\mathbf{q}}^T \quad \text{and} \quad \tilde{\mathbf{C}}_I^T \tilde{\mathbf{q}} \simeq \tilde{\mathbf{q}} \tilde{\mathbf{q}}^T \quad \text{for} \quad \tilde{\mathbf{q}} \tilde{\mathbf{q}}^T = \tilde{\mathbf{q}} \tilde{\mathbf{q}}^T = \mathbf{I}
\]

\[\text{Notation: The preceding superscript for vectors (e.g., } X \text{ in } X^a) \text{ denotes the frame of reference with respect to which the vector is expressed. } X^Y \text{ is the rotation matrix rotating vectors from frame } \{Y\} \text{ to } \{X\}, \text{ and } \tilde{\mathbf{q}} \text{ is the corresponding unit quaternion (Traviny and Roumeliotis, 2005). } \mathbf{p}_Y \text{ denotes the position of the origin of frame } \{Y\}, \text{ expressed in } \{X\}. \text{ ⊗ denotes quaternion multiplication, } | \mathbf{e} \times | \text{ is the skew-symmetric matrix corresponding to vector } \mathbf{e}. \text{ and } \mathbf{0}_g \text{ and } \mathbf{I}_3 \text{ are the } 3 \times 3 \text{ identity matrices, respectively. Finally, } \tilde{a} \text{ is the estimate of a variable } a, \text{ and } \tilde{a} = a - \hat{a} \text{ is the error of the estimate.} \]
B. EKF propagation

In the EKF, the IMU measurements are used to propagate the state and covariance estimates. Specifically, the gyroscope and accelerometer measurements are described respectively by the equations:

\[
\begin{align*}
\omega_m(t) &= \dot{\omega}(t) + b_g(t) + n_e(t) \\
a_m(t) &= \frac{1}{2} R(t)^T (\dot{\omega} a(t) - G g) + b_a(t) + n_a(t)
\end{align*}
\] \hspace{1cm} (5) \hspace{1cm} (6)

where \(\dot{\omega} \) is the IMU’s rotational velocity, \(G g \) is the gravitational acceleration, and \(n_e \) and \(n_a \) are zero-mean white Gaussian noise processes. Using these measurements, we can write the dynamics of the state vector as:

\[
\begin{align*}
G \dot{q}(t) &= \frac{1}{2} \Omega \left(\omega_m(t) - b_g(t) - n_e(t) \right) \dot{q}(t) \hspace{1cm} (7) \\
G \dot{v}(t) &= \frac{1}{2} R(t)^T (a_m(t) - b_a(t) - n_a(t)) + G g \hspace{1cm} (8) \\
G \dot{p}_f(t) &= C \dot{v}(t) \hspace{1cm} (9) \\
b_g(t) &= n_{wg}(t), \hspace{0.5cm} b_a(t) = n_{wa}(t) \hspace{1cm} (10) \\
\dot{q}(t) &= 0, \hspace{1.5cm} C \dot{p}_f(t) = 0 \hspace{1.5cm} (11) \\
\dot{t}_d(t) &= 0 \hspace{1.5cm} (12)
\end{align*}
\]

where

\[
\Omega(\omega) = \begin{bmatrix} \omega \times & \omega^T & 0 \end{bmatrix}
\] \hspace{1cm} (13)

Equations (7)-(9) describe the dynamics of the IMU motion, (10) describes the random-walk processes that model the biases’ slowly time-varying nature, (11) describes the fact that \(G T \) remains constant, while the last line expresses the fact that the time offset between the camera and IMU also remains constant. If the time offset is known to be time-varying, we can model it as a random-walk process by replacing the last line of the dynamics with \(t_d(t) = n_{t_d}(t) \), where \(n_{t_d}(t) \) is a white Gaussian noise process, whose power spectral density expresses the variability of \(t_d \).

Equations (7)-(12) describe the continuous-time evolution of the true states. For propagating the state estimates in a discrete-time implementation, we follow the approach described in (Li and Mourikis, 2013b). Specifically, for propagating the orientation from time instant \(t_k \) to \(t_{k+1} \), we numerically integrate the differential equation:

\[
\frac{\dot{q}(t)}{G} = \frac{1}{2} \Omega \left(\omega_m(t) - b_g(t_k) \right) \dot{q}(t) \hspace{1cm} (14)
\]

in the interval \(t \in [t_k, t_{k+1}] \), assuming that \(\omega_m(t) \) is changing linearly between the samples received from the IMU at \(t_k \) and \(t_{k+1} \). The velocity and position estimates are propagated by:

\[
\begin{align*}
C \dot{v}_{k+1} &= \frac{1}{2} R(t) \dot{v}(t) \dot{s}_k + G g \Delta t \hspace{1cm} (15) \\
C \dot{p}_f_{k+1} &= \frac{1}{2} \dot{v}(t) + G \dot{v}(t) \dot{v}_{k} + G \dot{R}(t) \dot{y}_k + 1 \frac{1}{2} G g \Delta t^2 \hspace{1cm} (16)
\end{align*}
\]

where \(\Delta t = t_{k+1} - t_k \), and

\[
\dot{s}_k = \int_{t_k}^{t_{k+1}} R(t) \left(a_m(t) - b_a(t_k) \right) dt \hspace{1cm} (17)
\]

The above integrals are computed using Simpson integration, assuming a linearly changing \(a_m \) in the interval \([t_k, t_{k+1}]\). Besides the IMU position, velocity, and orientation, all other state estimates remain unchanged during propagation.

In addition to the state estimate, the EKF propagates the state covariance matrix, as follows:

\[
P(t_{k+1}) = \Phi(t_{k+1}, t_k) P(t_k) \Phi(t_{k+1}, t_k)^T + Q_d \hspace{1cm} (19)
\]

where \(P \) is the state-covariance matrix, \(Q_d \) is the covariance matrix of the process noise, and \(\Phi(t_{k+1}, t_k) \) is the error-state transition matrix, given by:

\[
\Phi(t_{k+1}, t_k) = \begin{bmatrix} \Phi_1(t_{k+1}, t_k) & 0_{15 \times 7} \\ 0_{7 \times 15} & I_{7 \times 7} \end{bmatrix} \hspace{1cm} (20)
\]

with \(\Phi_1(t_{k+1}, t_k) \) being the \(15 \times 15 \) error-state transition matrix for the IMU state, derived in (Li and Mourikis, 2012; Li and Mourikis, 2013b).

C. EKF Updates

We now describe how the camera measurements are employed for EKF updates. Note that, if no time offset existed (or, equivalently, if it was perfectly known \textit{a priori}), the EKF update would present no difficulty. The complications arise from the fact that the image received by the filter at time \(t \) was in fact recorded at time \(t + t_d \), where \(t_d \) is now a random variable.

Let us consider the observation of the \(i \)-th feature in the image timestamped at \(t \). Assuming an intrinsically calibrated camera, this is described by:

\[
\begin{align*}
z_i(t) &= h(C \dot{p}_f(t_d + t) + n_i(t + t_d)) \\
&= \frac{1}{c} z_i(t + t_d) \begin{bmatrix} C x_i(t + t_d) \\ C y_i(t + t_d) \end{bmatrix} + n_i(t + t_d)
\end{align*}
\]

where \(h(\cdot) \) is the perspective camera model, \(n_i \) is the measurement noise vector, modelled as zero-mean Gaussian with covariance matrix \(\sigma_{ma}^2 I_2 \times 2 \), and \(C \dot{p}_f(t_d + t) \) is the position of the feature with respect to the camera at the time the image was sampled:

\[
C \dot{p}_f(t_d + t) = C R(t) \dot{R}(t_d) (G \dot{p}_f - G \dot{p}_f(t_d) + G \dot{p}_f(t_d)) + C \dot{p}_f \hspace{1cm} (23)
\]

In this equation \(C \dot{p}_f \) is the position of the \(i \)-th feature in the global frame, which in this section is assumed to be known.

To use \(z_i(t) \) for an EKF update, we must formulate the residual between the actual measurement and the measurement expected based on the filter’s estimates (Maybeck, 1982):

\[
r_i(t) = z_i(t) - h(C \dot{p}_f(t_d + t)) \hspace{1cm} (24)
\]

where \(C \dot{p}_f(t_d + t) \) denotes the estimate of \(C \dot{p}_f(t_d + t) \). To first-order approximation (as dictated by the EKF paradigm), this estimate is given by:

\[
C \dot{p}_f(t_d + t) = \frac{1}{t_d} R(t_d)(G \dot{p}_f - G \dot{p}_f(t_d) + G \dot{p}_f(t_d)) + C \dot{p}_f
\]
The above equation shows that, in order to compute the residual r_i, we must have access to the estimates of the state at time $t + \hat{t}_d$. Therefore, to process the measurement $z_i(t)$, we propagate using the IMU measurements up to $t + \hat{t}_d$, at which point we compute r_i and perform an EKF update. For this update, the Jacobian of $h^C(p_f,(t+\hat{t}_d))$ with respect to the filter state is necessary. This is given by:

$$H_{x,i}(t+\hat{t}_d) = \begin{bmatrix} H_{\theta,i} & H_{p,i} & 0_{2\times 9} & H_{\phi,i} & H_{p,c,i} & H_{d,i} \end{bmatrix}$$

(25)

where the nonzero blocks are the Jacobians with respect to the IMU rotation, IMU position, camera-to-IMU rotation, camera-to-IMU translation, and time offset, respectively. These are computed as:

$$H_{\theta,i} = J_i \hat{R} \begin{bmatrix} 0 & 0 & \hat{R}(t+\hat{t}_d) \end{bmatrix} \left(p_f, -G \hat{p}_f(t+\hat{t}_d) \right) \times]$$

$$H_{p,i} = -J_i \hat{R} \begin{bmatrix} 0 & 0 & \hat{R}(t+\hat{t}_d) \end{bmatrix}$$

$$H_{\phi,i} = J_i \hat{R} \begin{bmatrix} 0 & 0 & \hat{R}(t+\hat{t}_d) \end{bmatrix} \left(p_f, -G \hat{p}_f(t+\hat{t}_d) \right) \times]$$

$$H_{p,c,i} = J_i$$

$$H_{d,i} = H_{\theta,i} \hat{R}^T(t+\hat{t}_d) \hat{\omega}(t+\hat{t}_d) + H_{p,c,i} \hat{\nu}_f(t+\hat{t}_d)$$

(26)

where J_i is the Jacobian of the perspective model:

$$J_i = \frac{\partial h(t)}{\partial \mathbf{x}} \Big|_{t=\hat{c}_p \hat{r}_i(t+\hat{t}_d)} = \begin{bmatrix} 1 & 0 & -\frac{\hat{c}_p \hat{r}_i}{\hat{c}_p \hat{r}_i + \hat{c}_p \hat{r}_i} \\ 0 & 1 & -\frac{\hat{c}_p \hat{r}_i}{\hat{c}_p \hat{r}_i + \hat{c}_p \hat{r}_i} \end{bmatrix}$$

(27)

Note that all the matrices shown above are computed using the EKF state estimates at time $t + \hat{t}_d$. In addition, the Jacobian, with respect to the time offset, $H_{d,i}$, requires an estimate of the rotational velocity vector, which is computed using the IMU measurements as $\hat{\omega}(t+\hat{t}_d) = \omega_m(t+\hat{t}_d) - \mathbf{b}_g$. We thus see that all the Jacobians can be computed in closed form, using quantities available to the filter at $t + \hat{t}_d$. Using the above expression for $H_{x,i}(t+\hat{t}_d)$, we can now proceed to carry out the EKF update. Specifically, the state and covariance matrix are updated as:

$$\hat{x}(t+\hat{t}_d) \leftarrow \hat{x}(t+\hat{t}_d) + K_ir_i$$

$$P(t+\hat{t}_d) \leftarrow P(t+\hat{t}_d) - K_iS_iK_i^T$$

(28)

(29)

where:

$$K_i = P(t+\hat{t}_d)H_{x,i}(t+\hat{t}_d)S_i^{-1}$$

$$S_i = H_{x,i}(t+\hat{t}_d)P(t+\hat{t}_d)H_{x,i}(t+\hat{t}_d)^T + \sigma_i^2 I$$

(30)

(31)

If more than one features are observed in the same image, their residuals can be processed in the same manner.

A few interesting comments can be made at this point. We start by noting that the camera measurement was recorded at time $t + \hat{t}_d$, but it is being processed at $t + \hat{t}_d$. Since the estimate of the time offset will inevitably contain some error, the measurement will inevitably be processed at a slightly incorrect time instant. However, the EKF explicitly accounts for this fact. Specifically, since \hat{t}_d is included in the estimated state vector, the filter keeps track of the uncertainty in \hat{t}_d, via the state-covariance matrix P. Therefore, when computing the covariance matrix of the residual (S_i in (31)) the uncertainty in the time offset is explicitly modelled, and is accounted for in the computation of the state update. As a result, we are able to obtain both more accurate pose estimates and a better characterization of their uncertainty.

It is worth pointing out that, in some cases, the camera timestamps may be affected by a random-noise component ("jitter"), in addition to a systematic time offset. In the proposed formulation, it is straightforward to model these random effects in the estimator’s equations. Specifically, if each image timestamp is affected by an independent, zero-mean, random error with standard deviation σ_t, then, instead of (31), the covariance matrix of the residual is computed as:

$$S_i = H_{x,i}(t+\hat{t}_d)P(t+\hat{t}_d)H_{x,i}(t+\hat{t}_d)^T + \sigma_i^2 I + \sigma_t^2 H_{d,i}H_{d,i}^T$$

(32)

This modification makes it possible to model the additional timestamp uncertainty, and to account for it in the EKF update equations.

D. Implementation

The algorithm for concurrent pose estimation and temporal calibration described in the preceding sections can be implemented in a number of different ways. We have opted for a multi-threaded approach, as it allows for increased flexibility and extensibility. The high-level architecture described here is employed both in map-based localization, as well as in localization with unknown features, discussed in Section V. In our implementation, each sensor’s readings are managed by a separate thread. Two queues are maintained (one for the IMU measurements and one for the camera images), and each new measurement is timestamped and placed in the appropriate queue as it arrives.

One thread is used for implementing the EKF equations. This thread waits until the image queue has at least one image, at which point it begins using the measurements in the IMU queue to propagate the state estimate and its covariance matrix, as described in Section IV-B. If the timestamp of the the first image in the image queue is t, then IMU measurements are used to propagate up to time $t + \hat{t}_d$. After propagation is completed, the EKF update is performed, as described in Section IV-C. We note here that, in general, the time instant $t + \hat{t}_d$ will fall between two consecutive sample times of the IMU. Therefore, we employ linear interpolation to obtain an inferred IMU measurement at $t + \hat{t}_d$, used for propagation as well as in computing the estimated rotational velocity in (26).

Finally, we point out that if the camera images are delayed relative to the IMU (i.e., if $\hat{t}_d < 0$), the EKF thread will produce state estimates with a latency, as it waits until an image is available before processing the IMU measurements. If estimates of the current state are required at the IMU sample rate, these can be computed by a separate thread
running in parallel. Specifically, this thread can use the latest available state estimate from the EKF, as well as all the measurements in the IMU queue, to compute the estimate for the current system state via propagation.

V. MOTION ESTIMATION WITH UNKNOWN FEATURES

The preceding section describes time-offset estimation when the feature positions in the world are known a priori. In many cases, however, we are interested in motion estimation in previously unknown environments, for which it is not possible to have a feature map. Several algorithms have been developed for vision-aided inertial navigation in this type of applications. Broadly, these methods use the visual measurements in one of two ways (Williams et al., 2011): on the one hand, feature-based methods include feature positions in the state vector being estimated, as in EKF-SLAM, and employ the feature observations directly for state updates (see, e.g., (Jones and Soatto, 2011; Pinies et al., 2007)). On the other hand, pose-based methods do not include feature positions in the state vector, and instead maintain a state vector containing a number of poses (e.g., (Bayard and Brugarolas, 2005; Mourikis and Roumeliotis, 2007; Li and Mourikis, 2012; Shkurti et al., 2011)). In these methods, the feature measurements are first used to define constraints between two or more poses (e.g., to estimate the relative motion between consecutive images), and these constraints are subsequently used for filter updates.

As we explain in what follows, the proposed approach for time-offset estimation by explicitly including \(t_d \) in the filter state vector can be readily applied in both types of methods.

A. Feature-based methods

In typical feature-based EKF algorithms (often referred to as EKF-SLAM algorithms) the state vector of the filter contains the current state of the IMU, as well as the positions of the features detected by the camera. In order to perform online spatial and temporal calibration, we here additionally include \(t_d \) and the camera-to-IMU transformation in the EKF state vector. Thus, this state vector is given by:

\[
\mathbf{x} = \left[\mathbf{x}_i^T \mathbf{f}_i^T \mathbf{C}_i^T \mathbf{P}_i^T \mathbf{t}_d \mathbf{f}_1^T \mathbf{f}_2^T \cdots \mathbf{f}_N^T \right]^T
\]

where \(\mathbf{f}_i \), \(i = 1, \ldots, N \), are the features, which can be parameterized in a number of different ways (e.g., XYZ position, inverse depth (Montiel et al., 2006), homogeneous coordinates (Sola, 2010)).

With this augmented state vector, the feature measurements, \(\mathbf{z}_i \), can be directly employed for EKF updates. The process followed in order to address the presence of the time offset \(t_d \) is analogous to that described in Section IV-C. Specifically, if a measurement \(\mathbf{z}_i(t) \) is received, we employ the IMU measurements for propagation up to time \(t + t_d \), and perform an EKF update at that time. The residual (24) is computed, as well as its Jacobian with respect to the state, given by:

\[
\mathbf{H}_{x,i} = \begin{bmatrix} \mathbf{H}_{x,i}(t+t_d) & 0 & \cdots & \mathbf{H}_{f,i}(t+t_d) & \cdots & 0 \end{bmatrix}
\]

where \(\mathbf{H}_{x,i}(t+t_d) \) is defined in (25), and \(\mathbf{H}_{f,i}(t+t_d) \) is the Jacobian with respect to the \(i \)-th feature state, whose exact form will depend on the chosen feature parameterization. With this Jacobian, the EKF update can proceed according to the standard EKF equations, with no further modification.

B. Pose-based methods

In pose-based EKF algorithms, the state vector typically contains the current IMU state, as well as \(M \) poses (with \(M \geq 1 \)), corresponding to time instants images were recorded. For instance, in (Mourikis and Roumeliotis, 2007; Li and Mourikis, 2012; Shkurti et al., 2011; Kottas et al., 2012) the state vector is formulated as:

\[
\mathbf{x} = [\mathbf{x}_i^T \mathbf{c}_1^T \cdots \mathbf{c}_M^T]^T
\]

where \(\mathbf{c}_j \) is the camera pose at the time the \(j \)-th image was recorded:

\[
\mathbf{c}_j = \begin{bmatrix} \mathbf{C}_j \mathbf{q}_i^T & \mathbf{G}_j \mathbf{P}_i \end{bmatrix}^T
\]

(34)

Every time a new image is received, the state vector is augmented to include a copy of the current camera pose, and the oldest pose is removed. The features are tracked for up to \(M \) images, and are used for deriving constraints between the camera poses.

In order to estimate the extrinsic calibration and time offset between the camera and IMU in this setting, we can include these parameters in the state vector:

\[
\mathbf{x} = [\mathbf{x}_i^T \mathbf{C}_i^T \mathbf{P}_i^T \mathbf{t}_d \mathbf{c}_1^T \cdots \mathbf{c}_M^T]^T
\]

To account for these additional parameters, one can compute the Jacobians of the feature measurements with respect to them, similarly to what was described in the previous cases. However, in pose-based-methods, an alternative, and simpler, approach exists. Specifically, the only filter operation that needs to be changed, compared to the original methods, is state augmentation: when a new image is received with timestamp \(t \), we augment the state vector to include an estimate of the camera pose at time \(t + t_d \) (instead of time \(t \), as in the original method). We therefore use the IMU measurements to propagate up to \(t + t_d \), at which point we augment the state with the estimate of the camera pose at \(t + t_d \):

\[
\mathbf{\hat{c}}_{new} = \begin{bmatrix} \mathbf{G}_j \mathbf{q}_i(t+t_d) & \mathbf{G}_j \mathbf{p}_i(t+t_d) \end{bmatrix} = \begin{bmatrix} \mathbf{G}_j \mathbf{q}_i(t+t_d) \otimes \mathbf{t}_d & \mathbf{G}_j \mathbf{p}_i(t+t_d) + \mathbf{R}(t+t_d)^T \mathbf{t}_d \mathbf{p}_i \end{bmatrix}
\]

The filter covariance matrix is also augmented, as:

\[
\mathbf{P}(t+t_d) \leftarrow \begin{bmatrix} \mathbf{P}(t+t_d) & \mathbf{P}(t+t_d) \mathbf{J}_{new}^T \mathbf{P}(t+t_d) \mathbf{J}_{new} \end{bmatrix}
\]

(36)

where \(\mathbf{J}_{new} \) is the Jacobian of \(\mathbf{c}_{new} \) with respect to the state vector. This matrix has the following structure:

\[
\mathbf{J}_{new} = \begin{bmatrix} \mathbf{J}_f^T \mathbf{J}_{IC} \mathbf{J}_t \end{bmatrix}
\]
where J_I is the Jacobian with respect to the IMU state:

$$J_I = \begin{bmatrix} I_{3\times 3} & 0_{3\times 3} & 0_{3\times 9} \end{bmatrix}$$

J_{IC} is the Jacobian with respect to the camera-to-IMU transformation:

$$J_{IC} = \begin{bmatrix} l^I_G \dot{R}(t+t_d)^T & 0_{3\times 3} & \dot{t_d} \end{bmatrix}$$

and J_t is the Jacobian with respect to t_d:

$$J_t = \begin{bmatrix} l^I_G \dot{R}(t+t_d)^T & 0_{3\times 3} & \dot{t_d} \end{bmatrix}$$

(37)

Compared to the methods of (Mourikis and Roumeliotis, 2007; Li and Mourikis, 2012), the above equations differ in that additional Jacobians are computed with respect to the parameters of $C^T\mathbf{T}$, and with respect to the time offset t_d. This is the only change that is needed; after the augmentation has been performed in this fashion, the feature measurements can be used for EKF updates as in (Mourikis and Roumeliotis, 2007; Li and Mourikis, 2012), with no further alterations. Since the dependence of the camera poses on t_d has been modelled (via the Jacobian J_t), when the EKF update is performed t_d will also be updated, as normal in the EKF.

As a final remark, we note that up now, we have only discussed EKF-based methods, and we have shown that the time-offset between the camera and IMU can be explicitly included in the state vector and estimated online. The key to achieving this is to model the dependence of the measurements on the time offset, by computing the appropriate Jacobians with respect to t_d (see (26) and (37)). It is important to point out that a similar approach can be followed in methods that employ employ minimization for pose estimation, either in batch (Dellaert and Kaess, 2006) or in incremental form (Kaess et al., 2008). By including t_d in the estimated state vector, and computing Jacobians with respect to it, we can estimate it jointly with all other states of interest.

VI. IDENTIFIABILITY ANALYSIS

In the preceding sections we presented online algorithms for estimating the time offset between the camera and IMU. However, for these algorithms to be able to obtain meaningful results, this time offset must be identifiable (equivalently, observable) given the available measurements. In this section, we examine the identifiability of t_d in the case where the feature positions, time offset, camera-to-IMU transformation, and IMU biases are all unknown, and need to be estimated along with the IMU trajectory. We show that even in this most general (and most challenging) case, t_d is in general locally identifiable (Bellman and Aström, 1970). Clearly, if more information were available (e.g., known feature positions, and/or known $C^T\mathbf{T}$) the local identifiability of t_d would also hold.

A. Camera measurement model

We begin by examining the type of information provided by the camera measurements. When a camera is observing a sufficient number of unknown features, the feature measurements can be used to compute (i) the orientation of the camera with respect the initial camera frame, and (ii) the position of the camera with respect to the initial camera frame, up to an unknown scale factor s (Hartley and Zisserman, 2000). That is, by processing the visual measurements in the time interval $[0, t]$, we can compute a measurement of the camera rotation in the time interval $[t_d, t + t_d]$, and a scaled measurement of the camera translation in the same time interval:

$$\mathbf{R}_c(t) = C^T \mathbf{R}(t + t_d)e^{n_{cr}(t) \times}$$

(38)

$$\mathbf{p}_c(t) = sC^T \mathbf{p}_C(t + t_d) + \mathbf{n}_{cp}(t)$$

(39)

where $n_{cr}(t)$, and $n_{cp}(t)$ are noise vectors, and $\{C_o\}$ is the initial camera frame, i.e., the camera frame at the time instant t_d. Note that equivalently, we can state that the visual measurements can be used to compute (i) a measurement, ω_c, of the camera’s rotational velocity, and (ii) a scaled measurement, \mathbf{v}_c, of the camera’s translational velocity:

$$\omega_c(t) = C^T \dot{\mathbf{R}}(t + t_d) + n_{cw}(t)$$

(40)

$$\mathbf{v}_c(t) = sC^T \dot{\mathbf{p}}_C(t + t_d) + n_{cv}(t)$$

(41)

where $n_{cw}(t)$, and $n_{cv}(t)$ are the measurement noise vectors.

We will carry out our analysis by using the measurement models described above, instead of the “raw” feature measurements. We stress that (38)-(39) or (40)-(41) contain all the information that the visual feature measurements provide for the camera motion, and therefore we can use these, instead of the feature measurements, for our analysis. The advantage of using the “abstracted” camera measurement models shown above (an approach also employed in (Kelly and Sukhatme, 2011)) is that their use leads to a significantly simplified analysis.

B. Overview of the approach

In previous work, the question of which states of the vision-aided inertial navigation system can be estimated and under what conditions, has been addressed by performing an observability analysis. Specifically, (Jones and Soatto, 2011; Kelly and Sukhatme, 2011) examined the case where the feature positions, camera-to-IMU transformation, and IMU biases are unknown, but the time offset between the camera and IMU is known. For this scenario it was shown that, in general, the following quantities are (locally weakly) observable:

(O1) The trajectory expressed in the initial camera frame.

(O2) The gravity vector expressed in the initial camera frame.
(O3) The gyroscope and accelerometer biases.
(O4) The camera-to-IMU transformation, and
(O5) The positions of the features expressed in the camera frame.

The quantities O1-O5 are generally observable, that is, unless the camera follows “degenerate” trajectories such as constant-velocity motion or rotation about a single axis (see (Jones and Soatto, 2011; Kelly and Sukhatme, 2011) for a complete characterization). On the other hand, four degrees of freedom are always unobservable: three corresponding to the system's position in the global frame, and one to the rotation about gravity (i.e., the yaw).

The approach we follow in order to examine the local identifiability of \(t_d \) can be explained, at a high level, as follows. We start by defining a vector \(\xi \), which contains the time offset \(t_d \), as well as all the additional quantities needed in order to compute O1-O5. Specifically, we define \(\xi \) as:

\[
\xi = \begin{bmatrix}
C_v v_0^T & C_g g^T & b_g^T & b_s^T & C_p I & I & t_d & s
\end{bmatrix}^T
\]

where \(C_v v_0 \) is the IMU velocity at time instant \(t_d \), expressed in \(\{C_o\} \), and \(C_g g \) is the gravity vector expressed in the same frame. We stress that the elements of \(\xi \) describe all the potentially observable quantities in the system, and none of the quantities that are known to be unobservable. To see why, we first note that \(\xi \) contains the time offset \(t_d \), as well as O2, O3 and O4 explicitly. Moreover, using the elements of \(\xi \) and the measurements, we can compute the velocity of the camera at any time instant, expressed in the frame \(\{C_o\} \) (as shown in (47)). Integrating this velocity yields the camera trajectory in \(\{C_o\} \), which is quantity O1. Finally, once the trajectory of the camera is known, then the features' positions (quantity O5) can be computed by triangulation using the camera measurements.

The above discussion shows that if \(\xi \) is locally identifiable given the measurements, then \(t_d \) and O1-O5 are locally weakly observable. To determine whether \(\xi \) is locally identifiable, we employ the camera and IMU measurements, along with the system dynamics, to derive constraint equations that \(\xi \) must satisfy. These constraints have the general form:

\[
c_i(\xi, z_{[0,t]}, \omega_m_{[0,t]}, a_m_{[0,t]}) = 0
\]

where \(z_{[0,t]}, \omega_m_{[0,t]}, \) and \(a_m_{[0,t]} \) are the camera, gyroscope, and accelerometer measurements in the time interval \([0,t]\). Once these constraints are formulated, we can check the local identifiability of \(\xi \) by examining the rank of the Jacobian matrices of these constraints with respect to \(\xi \).

Since the conditions for the observability of O1-O5 have been derived in previous work, we here focus on examining the identifiability of \(t_d \). The main result, proven in Lemma 6.2, is that \(t_d \) is locally identifiable, except in a small number of degenerate motion cases that can be characterized in detail. This result validates the use of the EKF-based algorithms described in the preceding sections. Moreover, it provides us with a way to examine the observability of the entire system (including \(t_d \) and O1-O5), by leveraging the results of (Jones and Soatto, 2011; Kelly and Sukhatme, 2011). Specifically, when \(t_d \) is identifiable, we can use the measurements alone to determine its value; therefore in terms of observability, the system can be treated as one with a known \(t_d \) in this case. Put differently, when \(t_d \) is identifiable, the observability properties of O1-O5 are identical to those derived in previous work for the known-\(t_d \) case. Thus, to certify that all the quantities of interest (\(t_d \) and O1-O5) are observable, one can use Lemma 6.2 to verify that \(t_d \) is locally identifiable, and then employ the results of (Jones and Soatto, 2011; Kelly and Sukhatme, 2011) to verify the observability of O1-O5.

Our analysis of the identifiability of \(t_d \) consists of two steps. First, we show that, even if only the rotational components of the motion (i.e., rotational constraints) are considered, the time offset is in general locally identifiable, and we obtain a concrete description of the cases that cause loss of identifiability. We then show that if all the available information is utilized (which is the case in the algorithms described in the preceding sections), the set of degenerate cases is further restricted. The details of the analysis are presented in what follows.

C. Derivation of the constraints for \(\xi \)

We here ignore the noise (as standard in an identifiability/observability analysis) and derive two constraint equations: one based on the rotational velocity measurements, and one based on the accelerometer and (scaled) velocity measurements. We begin by using (40) and (5), and the identity \(C_R \omega(t) = C^{t}_R \omega(t) \), to obtain:

\[
\omega_m(t) = C^{t}_R \omega_c(t + t_d) + b_g
\]

which we can write in the form of (42) as follows:

\[
c_1(\xi, t) = C^{t}_t R^T \omega_c(t - t_d) + b_g - \omega_m(t) = 0
\]

This constraint involves the known functions of the IMU and camera rotational velocity measurements, as well as the unknown parameters \(t_d, C^t_t R \) (equivalent to \(C^t_t q \)), and \(b_g \).

To obtain the second constraint, we express \(v_c(t) \) as a function of \(\xi, R_c(t), \) and \(a_m(t) \). We start by writing \(C^{t}_t v(t + t_d) \) as:

\[
C^{t}_t v(t + t_d) = C^{t}_t G R v_c(t + t_d)
\]

(45)

\[
= C^{t}_t G R \left(G R v_I(t + t_d) - C^{t}_t G R(t + t_d) C f_t\right)
\]

Next, we note that the IMU velocity at time instant \(t + t_d \) can be computed as:

\[
G v_I(t + t_d) = G v_I(t_d) + \int_{0}^{t} G R(t + t_d) a(t + t_d) d\tau
\]

Using (6), we can write the last equation as:

\[
C^{t}_t v(t + t_d) = C^{t}_t v(t_d) + \int_{0}^{t} a(t + t_d) d\tau
\]
on the constraint (44), we compute the derivative of the rotational constraints (44) alone, if no vectors can be employed (44) and (48) to determine the identifiability as well as the elements of (ignoring the noise):

\[C_v(t + t_d) = C_v(t) + \int_0^t C_v(\tau) \mathbf{R}(\tau + t_d) d\tau \]

Substituting the last equation in (46), and using the identity \(\mathbf{R}_v(\tau) = \frac{\partial C_v(t + t_d)}{\partial \mathbf{R}} \mathbf{R}^T \) (see (38)), we obtain:

\[C_v(t + t_d) = C_v(t) + \int_0^t C_v(\tau) \mathbf{R}(\tau + t_d) d\tau - \int_0^t \mathbf{R}_v(\tau) \mathbf{R}(\tau + t_d) \mathbf{b}_n - \mathbf{R}_v(t) \mathbf{p}_I \]

(47)

where we have used the notation \(C_v = C_v(t + t_d) \). Finally, substitution in (41) yields the following constraint (ignoring the noise):

\[c_2(\xi, t) = s \left(C_v(t) + \int_0^t C_v(\tau) \mathbf{R}(\tau + t_d) d\tau - \int_0^t \mathbf{R}_v(\tau) \mathbf{R}(\tau + t_d) \mathbf{b}_n - \mathbf{R}_v(t) \mathbf{p}_I \right) - \mathbf{v}_c(t) = 0 \]

(48)

This equation is the second constraint we sought; it involves terms that are known via the IMU and camera measurements, as well as the elements of \(\xi \). In what follows, we show how we can employ (44) and (48) to determine the identifiability of \(t_d \).

D. Identifiability of \(t_d \) **based on the rotational-velocity constraint**

We now prove the following result:

Lemma 6.1: The time offset \(t_d \) is locally identifiable based on the rotational constraints (44) alone, if no vectors \(k_1 \) and \(k_2 \) exist, such that the rotational velocity of the IMU satisfies the following differential equation:

\[I \omega(t) = [k_2 \times] I \omega(t) + k_1 \]

(49)

Proof: To examine the local identifiability of \(t_d \) based on the constraint (44), we compute the derivative of \(c_1(\xi, t) \) with respect to the elements of \(\xi \) that appear in it:

\[D_1(t) = \left[\begin{array}{c} \frac{\partial c_1}{\partial b_g} \\ \frac{\partial c_1}{\partial \phi} \\ \frac{\partial c_1}{\partial t_d} \end{array} \right] \]

(50)

where

\[\frac{\partial c_1}{\partial b_g} = I_{3 \times 3} \]

(51)

\[\frac{\partial c_1}{\partial \phi} = -[C_R^T \omega_c(t-t_d) \times] \]

(52)

\[\frac{\partial c_1}{\partial t_d} = -C_R^T \omega_c(t-t_d) \]

(53)

Note that, since (44) must hold for any \(t \), we can generate an infinite number of constraints, by choosing different values of \(t \). A sufficient condition for \(b_g, C_R, t_d \) to be locally identifiable based on these constraints is that there exists a set of time instants, \(S = \{ t_1, t_2, \ldots, t_s \} \), such that the matrix

\[\begin{bmatrix} D_1(t_1) \\ D_1(t_2) \\ \vdots \\ D_1(t_s) \end{bmatrix} \]

(54)

has full column rank (Doren et al., 2009). Equivalently, a sufficient condition is that there exists no nonzero vector \(k = [k_1^T \ k_2^T \ k_3]^T \) such that, for all \(t > 0 \), the condition \(D_1(t)k = 0 \) holds. Note that, since we are interested in detecting cases in which \(t_d \) is not identifiable, we can restrict our attention to the vectors \(k \) in which \(k_3 \) is nonzero. Thus, we can set \(k_3 = 1 \) (the scaling of \(k \) is arbitrary). Using (50)-(53), the sufficient condition for \(t_d \) to be locally identifiable is that there exist no vectors \(k_1 \) and \(k_2 \) such that:

\[k_1 - [C_R^T \omega_c(t-t_d) \times] k_2 - C_R^T \omega_c(t-t_d) = 0 \Rightarrow k_1 + [k_2 \times] C_R^T \omega_c(t-t_d) = 0, \forall t > 0 \]

(54)

Using the identity \(C_R^T \omega_c(t-t_d) = l \omega(t) \) in the above equation yields (49).

Note that Lemma 6.1 provides a sufficient condition for the local identifiability of \(t_d \); if (49) does not hold for any \(k_1 \) and \(k_2 \), then \(t_d \) is locally identifiable. We can in fact show that this condition is also a necessary one, by showing that if it is not met, there exists at least one indistinguishable family of solutions for \(t_d \) and the remaining unknown parameters. To this end, we start by noting that if (49) holds for some \(k_1 \) and \(k_2 \), then \(l \omega(t) \) is given by:

\[l \omega(t) = e^{[k_2 \times] t} b_g + \int_0^t e^{[k_2 \times] (t-\tau)} \mathbf{d} \cdot k_1 \]

(55)

where \(b_g \) is the initial value of the rotational velocity. We can now prove, by substitution in (5) and (40), that for any scalar \(\delta \), the sets \{\(td, C_R, b_g, l \omega(t) \)\} and \{\(td', C_R', b_g', l \omega'(t) \)\}, where

\[td = td + \delta \quad C_R = C_R e^{-[k_2 \times] \delta} \quad b_g' = b_g + \int_0^\delta e^{[k_2 \times] (\delta-\tau)} \mathbf{d} \cdot k_1 \]

\[l \omega'(t) = l \omega(t) + \int_0^\delta e^{[k_2 \times] (\delta-\tau)} \mathbf{d} \cdot k_1 \]

yield exactly the same measurements \(\omega_m(t) \) and \(\omega_c(t) \), for all \(t \). This means that \(td \) and \(td' \) are indistinguishable, and thus \(td \) is not locally identifiable.

An important question to answer is whether the cases in which \(t_d \) becomes unidentifiable are practically relevant. Examination of (55) shows that this general functional form for \(l \omega(t) \) encompasses the cases of no rotation, when \(k_0 = k_1 = 0 \), and of constant rotational velocity, e.g., when \(k_1 = k_2 = 0 \) (in fact, in these cases the indistinguishable...
families contain more than one free parameters). Besides these two cases, which can potentially arise in real-world trajectories, we believe that all other degenerate situations are unlikely to occur in practice. We should note however, that the cases of zero or constant rotational velocity result in loss of observability even if the time offset between the camera and IMU is perfectly known (Kelly and Sukhatme, 2011; Jones and Soatto, 2011). In this sense, we see that having an unknown \(t_d \) does not appear to cause loss of observability in additional, practically significant situations.

E. Identifiability of \(t_d \) based on both constraints

In the preceding section we only considered the rotational constraints provided by the camera and IMU. We now also take into account the constraints arising from the velocity and acceleration measurements, and show that the set of degenerate motion cases that lead to an unidentifiable \(t_d \) can be further restricted. Specifically, we prove the following result:

Lemma 6.2: The time offset between the camera and IMU is locally identifiable, if no \(k_1, k_2, k_3, k_4, \) and \(k_6 \) exist, such that (i) the rotational velocity of the IMU satisfies the differential equation (49), and (ii) the accelerometer measurements satisfy the differential equation:

\[
\dot{\mathbf{a}}_m(t) = (k_2 \times) - k_3 \mathbf{I}_5 \mathbf{a}_m(t) - k_4 \mathbf{R}(t) / k_5 - \mathbf{R}(t) / k_6 (56)
\]

Proof: The proof of this result follows a course analogous to that of Lemma 6.1, and is given in the Appendix.

The above result shows that, in general, \(t_d \) is locally identifiable, and it may become unidentifiable only when both the orientation and the position of the platform follow specific motion patterns. As discussed, equation (49) yields only few critical cases for the orientation that are likely to occur in practice. Similarly, by examining the nature of the solutions to (56) for different choices of \(k_5 \), we find only few cases of practical significance. The most important one is that of constant accelerometer measurements, which can arise for instance when the platform is accelerating at a constant rate with no rotation, or when it is moving at constant velocity and rotations occur only about the direction of gravity. However, these scenarios would result in loss of observability even if \(t_d \) was perfectly known. Thus, we once again see that estimating \(t_d \) online does not appear to result in any new degenerate trajectories with practical significance.

As a final remark, we point out that Lemma 6.2 provides a means of certifying the local identifiability of \(t_d \) only. As discussed in Section VI-B, the identifiability/observability of the remaining states must be checked separately. Situations can arise where \(t_d \) is locally identifiable, but some of the states O1-O5 defined in Section VI-B are not. For example, if the rotational velocity of the platform is given by \(\dot{\omega}(t) = [\sin(t) \ 0 \ 0]^T \), \(t_d \) is locally identifiable, as \(\dot{\omega}(t) \) does not satisfy an equation of the form (49). However, since the rotation happens only about the axis \([1 \ 0 \ 0]^T\), in this case the orientation of the camera with respect to the IMU is not identifiable (Jones and Soatto, 2011; Kelly and Sukhatme, 2011; Mirzaei and Roumeliotis, 2008). Thus, as explained in Section VI-B, in order to certify that the entire system is locally weakly observable, one should certify that (49) and (56) do not simultaneously hold, and that none of the critical trajectories identified in (Jones and Soatto, 2011; Kelly and Sukhatme, 2011) occurs.

VII. Experiments

A. Real-world Experiments

Our real-world experiments involve indoor localization in an office environment, and outdoor localization during urban driving. The visual-inertial system used in our experiments consists of a PointGrey Bumblebee2 stereo pair (only a single camera was used) and an Xsens MTI-G unit. The IMU reported inertial measurements at 100 Hz, while the camera captured images at 20 Hz.

1) Map-Based Indoor Localization: The lab environment where the indoor-localization experiment took place is shown in Fig. 2. In this area 20 blue LED lights with accurately known positions exist, and these are used as the mapped visual features for localization. During the experiment, the sensor platform started from a known initial position, and was moved in two loops around the room, returning to its initial location after each one. Since no high-precision ground truth was otherwise available, this motion pattern gives us three time instants in the trajectory, for which the estimation errors can be computed. Fig. 3 shows the trajectory estimated by the algorithm described in Section IV (blue line) and the positions of the mapped features (blue asterisks). For the known positions in the trajectory, the maximum estimation error was found to be 4.6 cm, which

![Fig. 2: The area where the indoor experiment took place.](image-url)
is commensurate with the covariance matrix reported by the filter at these locations. In Fig. 4 we plot the estimate of the time offset, t_d, as well as the uncertainty envelope defined by $\pm 3\sigma$ times the standard deviation reported by the EKF. We can see that within the first few seconds the estimate converges very close to its final value, and that the uncertainty in the estimate drops rapidly. We point out that the standard deviation of t_d at the end of the experiment is only 0.40 msec, showing the high precision attainable by the proposed online estimation method.

To examine the effects of online time-offset estimation on the reported estimates and their precision, we re-processed the same dataset, but using the final estimate for t_d as an input and disabling its online estimation. In Fig. 5a we plot the difference of the trajectory estimates computed by the two methods (online estimation of t_d vs. a priori known t_d), while Fig. 5b shows the standard deviation reported by the two approaches. These plots demonstrate that performing estimation of t_d online yields results that are almost identical to those we would obtain if t_d was known in advance. We thus see that using the proposed online approach, instead of an offline calibration procedure, for determining t_d would result in no significant loss of performance.

2) EKF-SLAM: To test the performance of the online estimation of t_d in EKF-SLAM, we used the same dataset as for map-based localization, which provides a baseline for comparison. The features used for EKF-SLAM consisted of the 20 LEDs for which ground truth is available, as well as any additional features that were detected in the images via the Shi-Tomasi algorithm (Shi and Tomasi, 1994). Once the LED features were first detected and initialized, they were kept in the state vector for the remainder of the experiment. The re-observations of these “persistent” features after each loop provided correction of position drift. On the other hand, each of the Shi-Tomasi features was kept in the state vector only for as long as it was visible after its initialization. When the feature dropped out of the camera field of view, it was removed from the state, to maintain the computational cost of the algorithm within real-time constraints. On average, in each image 65 “temporary” Shi-Tomasi features were tracked.

For the SLAM features the inverse-depth parametrization is used initially, and it is then converted to the Cartesian XYZ parametrization to reduce computation as suggested by (Civera et al., 2008). In addition to the features, the state vector of the filter contains the time offset t_d and $\mathbf{J}^T\mathbf{T}$, as described in Section V-A. To ensure consistent estimation, the modified-Jacobian approach described in (Li and Mourikis, 2013b) is employed.

The trajectory estimate computed by EKF-SLAM with concurrent estimation of both $\mathbf{J}^T\mathbf{T}$ and t_d is shown in Fig. 3 (red dashed line), along with the estimated positions for the LED features (red dots). We can observe that the trajectories estimated by the map-based method and EKF-SLAM are very similar. The maximum error for EKF-SLAM at the known locations of the trajectory is 5.7 cm, while for the persistent features the maximum error is 7.0 cm. Moreover, the top plot of Fig. 6 shows the t_d estimate computed by EKF-SLAM, as well as the corresponding $\pm 3\sigma$ uncertainty envelope. The bottom plot of Fig. 6 shows the difference between the values of t_d computed in the map-based and EKF-SLAM experiments. After the first 3 sec in the trajectory, the two estimates are within 2.5 msec of each other, while the final estimates differ by 0.7 msec. The fact that the state estimates by the two different methods are so similar is a direct consequence of the identifiability of t_d in both cases, and indicates the robustness of the proposed algorithms.
Similarly to the previous experiment, we re-processed the data in EKF-SLAM using the final t_d estimate as an input and disabling its online estimation (note that C_i^T is still being estimated online). The difference in the trajectory estimates of the two approaches, as well as the reported position uncertainty, are shown in Fig. 7a and Fig. 7b, respectively. These
plots show that the difference in the trajectory estimates is very small (within one \(\sigma \) of the reported covariance for most of the trajectory), while the reported uncertainty is almost indistinguishable after the first few seconds of the experiment. We see that, due to the identifiability of \(t_d \) even without known feature positions, the online estimation of \(t_d \) does not incur any significant loss of performance.

3) Visual-inertial odometry: In addition to the indoor experiment, we also carried out a larger, outdoor driving experiment, to test the performance of visual-inertial odometry with concurrent estimation of \(t_d \) and \(\hat{F}T \). In this experiment, the camera-IMU system was mounted on the roof of a car driving in Riverside, CA, covering approximately 7.3 km in 11 minutes. The algorithm used for estimation is the MSCKF 2.0 algorithm of (Li and Mourtis, 2013b), with the addition of the time offset in the state vector, as described in Section V-B. Shi-Tomasi features are extracted in the images, and matched by normalized cross-correlation. Fig. 8 shows (i) the trajectory estimate computed by the proposed method, (ii) the estimate obtained using the final estimate of \(t_d \) as a known input, and (iii) the estimate computed without online estimation of \(\hat{F}T \) and \(t_d \) (for the \(\hat{F}T \) manual measurements were used, and \(t_d = 0 \) was assumed in this case). For this experiment, ground truth was obtained by a GPS-INS system, and is shown in black in Fig. 8.

Fig. 9 shows the orientation (yaw) and horizontal position errors for the three algorithms tested. On this plot, we also show the predicted uncertainty envelope computed as \(\pm 3\sigma \) times the standard deviation reported by the proposed method. We can observe that the proposed method yields accurate estimates (the error remains below 0.5% of the traveled distance), which are within the reported uncertainty envelope, indicating consistency. Similarly to what we observed in the cases of map-based estimation and SLAM, the results of the algorithm that performs online estimation of \(t_d \) are very similar to those obtained with a known \(t_d \). Moreover, the proposed method is considerably more accurate than the case where \(t_d \) and \(\hat{F}T \) are assumed to have “nominal” values, and are not estimated online.

B. Simulations

In addition to the real-world experiments presented above, we conducted Monte-Carlo simulation tests, to examine the accuracy and consistency of the estimates produced by the proposed algorithms, and to verify whether the results of our real-world testing are typical.
TABLE I: RMS errors in the map-based simulations

<table>
<thead>
<tr>
<th></th>
<th>RMS errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{C}_{P_I}</td>
<td>0.096 m 0.10° 0.021 m/sec 0.088 m 0.036° 1.519 m/sec</td>
</tr>
</tbody>
</table>

1) Map-based motion estimation: For the simulations of map-based localization, we generated trajectories with a camera/IMU system moving on a sinusoidal trajectory. In each image six landmarks with known locations, with depths uniformly distributed between 5 and 20 meters, were visible. The sensor noise parameters were chosen to be identical to those of the sensors we used for the real-world experiment described in Section VII-A.1. The IMU provided measurements at 100Hz, while the images were recorded at 10Hz.

To examine the statistical properties of our proposed algorithm, we carried out 50 Monte-Carlo trials. In each trial, the rotation and translation between the IMU and the camera were set equal to known nominal values, with the addition of random errors $\delta \mathbf{p}_I$ and $\delta \phi$. In each trial, $\delta \mathbf{p}_I$ and $\delta \phi$ were randomly drawn from zero-mean Gaussian distributions with standard deviations equal to $\sigma_d = 0.1$ m and $\sigma_q = 1.0^\circ$ along each axis, respectively. In addition, t_d was randomly drawn from the Gaussian distribution $\mathcal{N}(0, \sigma_t^2)$, with $\sigma_t = 50$ msec, and kept constant for the duration of the trial. Time offsets in the order of tens of milliseconds are typical of most systems in our experience.

Table I shows the RMS errors for the IMU position, orientation, and velocity, as well as for the camera-to-IMU transformation and the time offset. The values shown are averages over all Monte-Carlo trials, and over the second half of the trajectory. Similarly to what was observed in the case of map-based localization, the time-offset between the sensors can be very accurately estimated, owing to its identifiability. The average NEES values have been computed as 17.00 for the IMU state, 6.66 for \hat{C}_{T}, and 0.87 for t_d. Again, these are close to the theoretically expected values of 15, 6, and 1, respectively. For the feature position the average NEES is 4.48, above the theoretically expected value of 3. This slight increase in the feature NEES is expected, as EKF-SLAM is known to be sensitive to the nonlinearity of the measurement models.

3) Visual-Inertial Odometry: To obtain realistic simulation environments for visual-inertial odometry, we generated the simulation data based on a real-world dataset. Specifically, the ground truth trajectory (position, velocity, orientation) for the simulations is generated from the ground truth of a real-world dataset, which was about 13 minutes, 5.5 km long. Using this trajectory, we subsequently generated IMU measurements corrupted with noise and biases, as well as visual feature tracks with characteristics matching those in the real-world data. For each trial the camera-to-IMU transformation and the time offset were generated as in the map-based simulations, by perturbing known nominal values.

In the tests presented here, we compare the performance of visual-inertial odometry using the MSCKF-based approach described in Section V-B, in four cases: (i) online \hat{C}_{T} estimation enabled, but t_d estimation disabled, (ii) t_d estimation enabled, but \hat{C}_{T} estimation disabled, (iii) t_d and \hat{C}_{T} estimation enabled (i.e., the proposed approach), and (iv) the case where t_d and \hat{C}_{T} are perfectly known and not estimated. In the first three cases (termed the “imprecise” ones), the exact values of \hat{C}_{T} and t_d are not known (only their nominal values are known). When a particular parameter is not estimated, it is assumed to be equal to the nominal

2) EKF-SLAM: For the SLAM simulations, we generated trajectories that were similar to the trajectory of the real-world experiment presented in Section VII-A.2. The simulated IMU-camera system moved in a $7 \times 12 \times 5$ m room for 90 seconds, at an average velocity of 0.37 m/sec. The sensor characteristics were the same as in the real-world experiment described in Section VII-A.2. A total of 50 persistent features were placed on the walls of the room, and in each image we generated 100 additional temporary features, with depths uniformly distributed between 1.5 and 10 meters.

Table II shows the RMS errors for the IMU position, orientation, and velocity, as well as for the camera-to-IMU transformation, feature positions, and the time offset, averaged over all Monte-Carlo trials, and over the second half of the trajectory. Similarly to what was observed in the case of map-based localization, the time-offset between the sensors can be very accurately estimated, owing to its identifiability. The average NEES values have been computed as 17.00 for the IMU state, 6.66 for \hat{C}_{T}, and 0.87 for t_d. Again, these are close to the theoretically expected values of 15, 6, and 1, respectively. For the feature position the average NEES is 4.48, above the theoretically expected value of 3. This slight increase in the feature NEES is expected, as EKF-SLAM is known to be sensitive to the nonlinearity of the measurement models.

<table>
<thead>
<tr>
<th></th>
<th>RMS errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{C}_{P_I}</td>
<td>.078 m .26° .017 m/sec .01 m .07° .094 m .1 m/sec</td>
</tr>
</tbody>
</table>
value. By comparing these three cases, we can evaluate the necessity and effectiveness of the online estimation of individual parameters. Moreover, by comparing against case (iv), where all parameters are perfectly known (the “precise” scenario), we can assess the loss of accuracy incurred due to the uncertainty in the knowledge of these parameters.

Table III shows the average RMSE and NEES for the four cases, averaged over 50 Monte-Carlo trials. For clarity, the position errors are reported in the NED (North-East-Down) frame, and IMU orientation in roll-pitch-yaw. We see that, to be able to accurately estimate the IMU’s motion, both the frame transformation and the time offset between the camera and IMU must be estimated. If either of these is falsely assumed to be perfectly known, the estimation accuracy and consistency are considerably degraded (see the first two data columns in Table III). Moreover, by comparing the third and fourth data columns, we can see that the accuracy obtained by our online estimation approach is very close to that obtained when both \(\hat{C}_T\) and \(t_d\) are perfectly known. This result, which was also observed in the real-world experiments, is significant from a practical standpoint: it shows that the proposed online approach, initialized with rough estimates, can provide pose estimates almost indistinguishable to what we would get if offline calibration was performed in advance.

4) Time-varying \(t_d\): For all the results presented up to now, a constant time offset was used. We here also examine the case of a time-varying \(t_d\) in visual inertial-odometry. Instead of presenting Monte-Carlo simulation results (which look similar to those in Table III), it is interesting to show the results of a single representative trial. In this trial, the time offset varies linearly from 20 msec at the start, to 520 msec at after 500 sec, modelling a severe clock drift of 0.5 sec in 8.3 minutes. Fig. 10 presents the estimation errors and associated ±3 standard deviations for the IMU position, the IMU orientation, and the time offset. We can see that even in this challenging situation (unknown features, uncertain camera-to-IMU transformation, large and time-varying offset) the estimates remain consistent. We stress that this is due to the identifiability of \(t_d\), which allows us to track its value closely as it drifts over time.

VIII. CONCLUSION

In this paper we have proposed an online approach for estimating the time offset, \(t_d\), between the camera and IMU during EKF-based vision-aided inertial navigation. The key component of our formulation is that the variable \(t_d\) is explicitly included in the EKF state vector, and estimated jointly with all other variables of interest. This makes it possible to track time-varying offsets, to characterize the uncertainty in the estimate of \(t_d\), and to model the effect of the imperfect knowledge of \(t_d\) on the accuracy of the estimates, in a natural way. Moreover, we have shown that \(t_d\) is identifiable in general trajectories, which guarantees the effectiveness of the proposed online estimation approach. A detailed characterization of the critical motion cases that lead to loss of identifiability of \(t_d\) reveals that they are either (i)
cases that are known to cause loss of observability even with a perfectly known \(t_d \). or (ii) cases that are unlikely to occur in practice. Our simulation and experimental results indicate that the proposed approach leads to high-precision estimates for both the system motion, as well as for the temporal and spatial alignment between the camera and IMU.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (grant no. IIS-1117957 and IIS-1253314), the UC Riverside Bourns College of Engineering, and the Hellman Family Foundation.

APPENDIX: PROOF OF LEMMA 6.2

We start by performing a change of variables, defining \(\bar{v} = s_c \bar{v}_o \), \(\bar{g} = s_c \bar{g} \), \(\bar{b} = -s_f \bar{R} \bar{b}_a \), and \(\bar{p} = -s_c \bar{p}_d \) to obtain:

\[
\begin{align*}
\bar{c}_2(\xi, t) = \bar{v} + \bar{g}t + s \int_0^t \bar{R}_c(\tau) \bar{R} \bar{a}_m(\tau + t_d) d\tau \\
+ \int_0^t \bar{R}_c(\tau) \bar{b} + \dot{\bar{R}}_c(t) \bar{p} - \bar{v}_c(t) = 0
\end{align*}
\]

(57)

with

\[
\bar{\xi} = \begin{bmatrix} \bar{v}^T & \bar{g}^T & \bar{b}_g^T & \bar{p}^T & \bar{q}^T & \bar{m}_d \end{bmatrix}
\]

Note that since \(t_d \), \(b_g \), and \(\bar{q} \) remain the same in the change from \(\xi \) to \(\bar{\xi} \), the condition \(c_1 \) in (44) also holds for \(\bar{\xi} \) with no modification.

Clearly, \(\xi \) is locally identifiable if and only if \(\bar{\xi} \) is. A sufficient condition for identifiability is that there exists a set of time instants, such that if we evaluate the matrix containing the Jacobians of \(c_1 \) and \(c_2 \) at these time instants, the matrix has full column rank. In turn, a sufficient condition for this is that there exists no nonzero vector \(\bar{m} \) such that,

\[
\begin{bmatrix} D_1(t) \\ D_2(t) \end{bmatrix} \bar{m} = 0 \iff D_1(t) \bar{m} = 0 and D_2(t) \bar{m} = 0
\]

(58)

where \(D_1(t) \) is the Jacobian of \(c_1 \) with respect to \(\bar{\xi} \), and \(D_2(t) \) is the Jacobian of \(c_2 \) with respect to \(\bar{\xi} \). We now introduce the partitioning

\[
\bar{m} = \begin{bmatrix} m_1^T & m_2^T & m_3^T & k_1^T & k_2^T & k_2^T & m_5 \end{bmatrix}^T
\]

where the element corresponding to the Jacobians with respect to \(t_d \) has been set to one, as we are interested in detecting cases in which \(t_d \) is not identifiable.

The condition \(D_1(t) \bar{m} = 0 \) is identical to the condition that was encountered in the proof of Lemma 6.1, and yields the first condition of Lemma 6.2. The second condition of Lemma 6.2 is derived from the equation \(D_2(t) \bar{m} = 0 \). Computing the Jacobians of \(c_2 \) with respect to \(\bar{\xi} \), and substituting in \(D_2(t) \bar{m} = 0 \), we obtain:

\[
\bar{m}_1 + \bar{m}_2 + \int_0^t R_c(\tau) d\tau \bar{m}_3 + \dot{R}_c(t) \bar{m}_4
\]

\[
+ s \int_0^t R_c(\tau) \bar{R} a_m(\tau + t_d) d\tau
\]

\[
+ \int_0^t R_c(\tau) \bar{R} \bar{a}_m(\tau + t_d) d\tau
\]

\[
+ \int_0^t R_c(\tau) \bar{R} a_m(\tau + t_d) d\tau m_5 = 0, \forall t > 0
\]

Differentiating this expression with respect to \(t \), and re-arranging terms, yields:

\[
\bar{a}_m(t + t_d) = \left(\left[k_2 x \right] - \frac{m_5}{s} I_3 \right) a_m(t + t_d) - \frac{1}{s} \gamma(t), \forall t > 0
\]

or, equivalently,

\[
\bar{a}_m(t) = \left(\left[k_2 x \right] - \frac{m_5}{s} I_3 \right) a_m(t) - \frac{1}{s} \gamma(t - t_d), \forall t > 0
\]

(59)

where

\[
\gamma(t - t_d) = \bar{c} R_T R_c(t - t_d) T m_2 + \bar{c} R_T m_3
\]

\[
+ \bar{c} R_T R_T^T (t - t_d) \bar{R} \bar{c}(t - t_d) m_4
\]

\[
= l_4 R(t) C \bar{c} R_T^T m_2 + \bar{c} R_T m_3
\]

\[
+ \bar{c} R_T R_T^T l_4 \bar{R}(t) \bar{c} R_T^T m_4
\]

\[
+ \left(l_4 \bar{c} R_T \bar{c} R(c(t) x) \right) \bar{c} R_T m_4
\]

Substituting the last expression in (59), and defining \(k_3 = m_5/s \), \(k_4 = 1/c R_T^T m_3 \), \(k_5 = 1/c R_T m_4 \) and \(k_6 = 1/c R_T^T^2 m_2 \), yields (56).

REFERENCES

