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Starting from a simple model of the double-mell semiconductor heterostructure capable of gen-
erating continuous-wave quantum "Bloch" oscillations, we have calculated analytically their major
statistical properties, including spectral density and amplitude distribution. Other characteristics
of the structure, pertaining to the Bloch oscillation, such as the dc I-V curve, rf impedance, and dc
response to an external rf signal, were also calculated. The results are used to discuss similarities
and difFerences between the Bloch oscillations and other types of oscillatory processes including the
Josephson oscillations, laser radiation, spontaneous radiation, and narrow-band random noise.

I. INTRODUCTION

Recently there has been a revival of interest in quan-
tum "Bloch" (or "Stark, " or "Rabi") oscillations which
can be induced in solid state structures biased by dc elec-
tric Geld E. The &equency of these oscillations is given
by the fundamental quantum relation io = AW/h, where
AR' is the change of the electron energy due to its tran-
sition &om one state to another; in the simplest case of a
periodic structure AW = eEd, where d is the spatial pe-
riod. Although the Bloch oscillations have been discussed
theoretically for a long time now, especially after the
advent of the semiconductor heterostructures4 s (see also
reviews ) until very recently the experimental situation
was much less encouraging. Observation of continuous-
wave Bloch oscillations in the main candidate structures,
long semiconductor superlattices, is considerably hin-
dered by the efFects of electric charge accumulation. '

These effects are less forbidding for short pulses of Bloch
oscillations which can be induced by short light pulses
pumping a small number of electrons into an initially
empty well or miniband of a heterostructure. Such
pulses have been observed recently &om double-well
and multiwellis heterostructures. (Note that the Bloch
dynamics of these two systems is similar in the most in-

teresting high-field limit. )
These remarkable experiments invite further theoreti-

cal studies of the Bloch oscillators as possible radiation
sources in the submillimeter wave band, including not
only their power and &equency, but also statistical prop-
erties such as spectral density distribution (in particular,
linewidth) and amplitude statistics. Such calculations,
to the best of our knowledge, have never been carried
out for Bloch oscillations, with the single exception of a
Monte Carlo calculation of the spectral density of elec-
tron velocity in lateral superlattices for one particular set
of parameters. This is why obtaining analytical expres-
sions for the statistical characteristics was the main goal
of this work.

We have concentrated on the continuous-wave oscil-

lation mode as the most interesting one. A double-well
(rather than a rnultiwell) structure, iv was selected for our
analysis because that is the most straightforward way to
circumvent the charge accumulation instabilities typical
for this mode.

The paper is organized as follows. In Sec. II we in-
troduce a relatively simple model of the double-well het-
erostructure and derive its basic equations. In Sec. III we
calculate the dc I—V characteristic of the structure and
compare our results with those obtained earlier by other
authors. Section IV is devoted to statistical properties of
the Bloch oscillations, determined by the multielectron
nature of the oscillations. We have found it enlighten-
ing to contrast the results for "autonomous" oscillations
(induced by dc electric field) with their characteristics
under the inQuence of a weak external rf radiation with
a &equency close to the Bloch oscillation &equency. Cal-
culations of these characteristics are described in Sec.
V. One of the results, the rf conductance of the system,
has allowed us to 6nd the available power of Bloch os-
cillations (Sec. VI). In conclusion (Sec. VII), we use
the results obtained in the preceding sections to discuss
the position of the Bloch oscillations in the row of other
self-oscillatory physical phenomena, including Josephson
oscillations, laser radiation, and spontaneous radiation.

II. MODEL AND BASIC EQUATIONS

We will consider processes in the semiconductor
double-well structure with the band-edge diagram shown

in Fig. 1. Quantization of the electron motion along the
z axis (perpendicular to the layers) leads to formation of
subbands in quantum wells 1 and 2, so that the electron
energy in the ith well (i = 1, 2) in the lowest subband
can be presented as

e;(p) = e;(0) + p /2m,

where pl n is the transverse momentum. We chose the
zero of energy in such a way that the bottom values ei(0)
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scattering rate F, as well as the rates of tunneling through
the edge barriers FL, R, is small in comparison with the
net splitting of the energy levels due to tunneling between
the wells

(hz+ tz)iy2

In this case it is convenient to diagonalize Hp (for each
p):

H. = ).[s+(p)~,'~~+ s (p)/3-tP~]

FIG. 1. Edge-band diagram of the double-well het-
erostructure considered in this work. Energy levels of elec-
trons with zero transverse momentum p are shown by solid

lines, while dashed lines show these levels in the absence of
the coupling between the wells (t = 0). In this work, we

consider the case M'g, R, hl && 4 (( EL &, EL R, though our(o) (&)

main qualitative conclusions are hardly dependent on this as-

sumption.

and sz(0), which are shown by dashed lines in Fig. 1, can
be written as

sg(0) = h/2, sz(0) = —h/2.

The parameter h re6ects both a possible initial asymme-
try of the wells and the efFect of the dc voltage V between
external electrodes, a part gV of which drops between the
wells:

and

p2
(io)

It is straightforward to express HL„HR, and H„~qt
in this new basis and. , treating these terms as perturba-
tions, find dynamics of the single-particle density matrix
elements

where

at = at cosP —bt sing, Pt = bt cosP+ at sing,

p = arctan[(b, —h)/t], 0 ( p ( 1r/2, (9)

h = hp+geV.

The factor g & 1 is determined by the ratio of capaci-
tances between the wells and external electrodes; typi-
cally g is close to 1/3.

As usual, we will assume that electrons can tunnel
through the barriers separating the wells without chang-
ing their transverse momentum p. Then the Hamiltonian
of the structure can be presented as follows:

H = HP + HL, + HR + H„~t,
where

Hp ——) [s'q(p)a a~+f2(p)b bz ——(a b„+H.c.)], (4)

H~ =).«(~)c,'"+ ~-t( ,' ca+H')

and HR is given by a similar expression with L ~ B.
Here a, at, b, bt c, ct are the corresponding creation and
annihilation operators, and q is the momentum of elec-
tron motion in the external electrode. (In the following
calculations we will assume that the area of the structure
is not too small and hence the spectra «R(q) and sq 2(p)
are continuous on the energy scale of interest. )

The Hamiltonian

H„1t ——) [V (p, p')ata„+ V2(p, p')btb )

describes elastic scattering of the electrons inside the
quantum wells. Our main assumption will be that the

where ( ) denotes averaging over the true multiparti-
cle density matrix. In the usual Markov approximation
these equations are reduced to equations for diagonal (in
p) elements

q(p)
—= p, 2(p):—p~, (p) = p„, (12)

which, in our approximation (1), do not depend on the
direction of p:

nl (p) = I «os' P[fp (s+ (p) ) —n& (p) ]
+I'R»n' p[fR(s+(p)) —n~(p)]
+I' sinz P cos' P[nz (p+) —ng (p)],

nz(p) =I'L, sin /[fr, (s (p)) —nz(p)]
+I'R c $[fR(s (p)) — 2(p)]
+I'sin' icos' P[ng(p ) —nz(p)],

1
"(p) = (—&/& —'Y)" 'Y—:-(I + I + I ) .

2

(14)
In these equations p~ are defined by the relations

p2~/2m = p2/2m 6 4, and

I'i, R =——
I ti, R I «,R

I'—=
q I V~(»') —V2(pp') I' p

where pL, R are the densities of states in the external elec-
trodes, while p = Sm/1rh is the two-dimensional (2D)
density of states in the wells (8 is the structure area). In
what follows, we will assume that the rates F and FL, R
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do not depend on energy, and hence on p. This assump-
tion requires, in particular, the quantization levels to be
well above the conduction band edge in the external elec-
trodes (Fig. 1): El, Eg )) b, .

Note that the master equations (13) have a clear phys-
ical meaning, describing a detailed balance of electrons
with momentum p on their two effective energy levels

sy(p), while the equation (14) for the off-diagonal matrix
element describes the decay of the quantum coherence be-
tween electrons on these levels. Generally, the system of
Eqs. (13), (14) is typical for homogeneously broadened
two-level quantum systems (see, e.g. , Ref. 20). Probably
the only feature specific to semiconductor heterostruc-
tures is that generally there are many two-level systems,
each with a specific value of the transverse momentum p,
but with the same level splitting 6, and all these systems
are coupled via scattering [described in Eqs. (13) by the
terms proportional to I']. For practical calculations, it is
easier to make a change of variables, p m p, p ~ p+,
in the equation for nz The .resulting equations for nq(p)
and n2(p+) form a closed system, so that the summation
over p (necessary for calculation of the observable vari-
ables) can be carried out at the 6nal stage, after solution
of this system.

III. dc I —V CHARACTERISTIC

It is evident Rom Eqs. (13) that the dc current I
flowing through the system can be expressed as follows:

I = r, ) (. .'y[y, (,(p)) —,(p)]

+»n' 4'[fr. (&-(p)) —n2(p)1)

er~—) (sin p[f~(s+(p)) —nx(p)]

+ co"4[fR(s-(p)) —n2(p)])

@L,R ~~T~(+) (16)

where T is the temperature in energy units. In this limit
the current can be expressed as

via stationary solution nq 2(p) of these equations. The
resulting formula is quite simple for the most interesting
case when the quantization levels k6/2 are located well
below the Fermi levels in both external electrodes (Fig.
1):

((r, cos'y+r~sln p)(rgsln f+rRcos y) r~+I„)I = 2e pVp + I'
rl. rR sin pcos2 p rL, ra )

(17)

Figure 2(a) shows the dependence of the I/V ratio on
the asymmetry parameter b. One can see that this ratio
peaks at b = 0, when the energy levels in the wells are
aligned. The width of this peak, in terms of b, is of the
order of

IV. BLOCH OSCILLATION STATISTICS

In accordance with Eq. (4), the operator of the current
I(t) flowing between the quantum wells can be presented
as

(~(r, + r~) i "
rl rR )

(18) I(t) = ie )(atb„——bta&) = ie )(n—~p„—p„o'r )

This resonance dependence shows up in the dc I—
V characteristics of the structure [Figs. 2(b) and 2(c)],
because the applied voltage V changes b [see Eq. (2)]. If
the structure was initially asymmetrical (~ bp ~)) t), the
peak in the I—V characteristic [Fig. 2(b)] is very similar
to that shown in Fig. 2(a). In the initially symmetrical
structure (~ bp ~&& t) [see Fig. 2(c)], the resonance peak
is, however, distorted from its "seed" shape shown in Fig.
2(a) since it is very close to the origin, where the current
is suppressed by the smallness of the number of available
states in the external electrodes [this effect is described
by the factor V in Eq. (17)]. Note that the width of
the dc current peak (in energy units) always exceeds the
tunneling amplitude t, i.e., with our assumptions, the
peak is much wider than I' and I'L R.

In the limit I' (( I"L R our expression coincides with
that obtained by Gurvitz, who solved a similar prob-
lern for a system without scattering. More generally, the
negative-slope regions of the dc I —V curves, similar to
those shown in Fig. 2, are typical for virtually all struc-
tures capable of generating the Bloch oscillations and
other systems with resonance tunneling.

In order to calculate the spectral density

Si(~) = 4 K(7) cosurd7
0

(20)

of the current, we should find its symmetrized correlation
function

K(~) = —(I(t)I(t + ~) + I(t+ ~)I(t)) .
1

(21)

[Our choice of the numerical factor in Eq. (20) corre-
sponds to relation SI(ur) = (I )/(bu/2m), where I is
the component of the current I(t) within a narrow inter-
val b,ur around an observation frequency ~.]

A straightforward calculation using Eqs. (13), (14),
and (19)—(21) yields
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e2t y
Sl((u) = 2,Z,

2h' (~ —~a)'+ p'

Z = ) (atappppt + anat ptpp), (u ) G,

p

(22)

where mt' = b/h. According to Eq. (14), in the station-

ary regime r„= 0, i.e., there is no coherence between

states on the levels e~(p), so that

~ = ) :( .(p)[I - .(p)] + .(p)[I - (p)]),

and we can evaluate the sum using the stationary solution
of Eq. (13):

) n1(p)[1 —n2(p)] = [g(—6)(ac+ bd) + g( —4 —eV)ad+ g(—b, + eV)bc],(.+ b)'
p

) n2(p)(I —n1(p)) =
2 [g(6)(ac+ bd) + g(b, + eV)ad+ g(A —eV)bc],

p

(23)
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where g(x) = x/(I —exp( —z/T)), and

a = Il, sin y(rl, cos Q+ Itt sin Q+ I cos Q),

b = rtt cos p(1'I, cos p+ I ~ sin p+ I s111 p)

c = I L, cos f(I I, sin Q+ I tt cos Q+ I sill Q),

d = I'ttsin P(I'L, sin /+ I'ttcos /+ I'cos P).

10
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Figure 3 shows the spectral density as a function of
the observation &equency u for several values of the dc
voltage V (the corresponding bias points are marked in
Fig. 2). In the particular case when the "detuning"

~

b
~

is larger than t, so that the electron wave functions are
strongly localized in the wells, the Fermi levels in the
wells coincide with those of the external electrodes [these
conditions are satisfied when the bias point lies outside
the peak (18) of the dc current]. Then, if the temperature

I I
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FIG. 2. dc current through the quantum double-well
structure as a function of (a) the asymmetry factor b, and
(b), (c) the applied dc voltage V, for various intensities of the
elastic scattering I' at I'l. = I'n = I' . (b) shows the results
for an asymmetric structure, while (c) shows the results for
the initially symmetric structure. Points in (b) indicate a set
of parameters for plots in Figs. 3, 4, and 6.
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FIG. 3. Spectral density of the tunneling current I(t)
through an asymmetric system (bo = —St) as a function of
the observation frequency u, for I'/I', = 3, hp/t = 0.2 and
several values of the dc voltage [the corresponding dc bias
points are indicated in Fig. 2(b)]. The dashed line shows the
amplitude of the peak in spectral density according to Eq.
(24) which is valid for dc bias voltages outside of the resonant
peak in the dc I —V curve.
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is much smaller than
i
eV —b i, one has Z = p i

eV —b ~,

and

e2t2
Sl(~) =

2 p i
eV —b i, for ~ or~.

2h ~ —~~ +p

~~ by addition of the term

V„f = Re[Vie' '] (26)

(24)

This formula shows clearly that Sl(~) peaks at the Bloch
oscillation frequency, sr~ = b./5, and that the linewidth
of the oscillations is 2p. The height of the peak vanishes
at a particular value of the dc voltage, V = bo/e(l —ri),
where the factor

i
eV —b

i
is zero, and grows propor-

tionally to the absolute deviation from that point (where
quantum wells contain the same number of electrons and
the net amplitude of the Bloch oscillations vanishes).

Thus, the dc-biased double-well structure may exhibit
continuous-wave narrow-band Bloch oscillations (in con-
trast to the conclusion reached in the recent work21), and
the amplitude of these oscillations increases with increas-
ing asymmetry of the structure. Note, however, that
Sl(u) does not present the available power density for
two reasons.

At ~ g 0, the tunneling current between the wells
is not equal to the current in the external circuit, due
to the shunting effect of capacitances between the lay-
ers and currents Bowing between the wells and external
electrodes;

Sl(u) as calculated above contains a zero-point contri-
bution.

We will come back to these problems in Sec. VI.
Now let us note that according to Eqs. (13), (14), and

(24), in the limit p « u~ the Bloch oscillations can
be considered as a sum of independent oscillators of the
same frequency u~ = 6/h with the amplitude et/2h and
linewidth p each. This implies that the net oscillation
amplitude A~ is distributed with the probability density

2A~ 2 (et)'
p(A/) = exp( —A//D), D =

~

—
~

E.
D (2h)

(25)

Such a wide distribution is typical for the amplitude
of the spontaneous radiation (or a white noise passed
through a narrow-band filter).

V. EFFECTS OF EXTERNAL RADIATION

. b
R = [i((u —(u~) —p]R„+i sin—g

2h

x cos P[n1(p) —n2(p)], R„=r„e' '.
Substituting the stationary solution of this equation

into Eq. (19), we find that the tunneling current I(t)
acquires an additional component at the signal &equency
u, with the complex amplitude

I~ —= (I(t)e "')
proportional to V~. For their ratio

Y(~) = Ig/rIV~, (28)

which is essentially the small-signal (differential) admit-
tance of the structure due to the tunneling current, these
equations yield

. e2t 1
Y(~) = i 2 singcosg-

2h 4J —4)~ + XP

x ) [n1(p) —n2(p)] for id &d/,

to the dc voltage V applied to the structure. Such a de-
scription is valid when the effective external admittance

i
Y,r(ur) i

[where Y,r(&u) = Z, (ur) +iuC, Z, (u) is the
external circuit impedance, and | is the structure ca-
pacitance] is much higher than the tunneling admittance
YT [ IT /V~ ]. For typical structures in the frequency
range of interest (ur 1012 14 s 1), YT « uC, so that
the above condition is fulfilled regardless of the value of
Z, (u) and structure area S.

The rf voltage (26) results in oscillation of the detuning
h with the amplitude b = rieV~, and generally affects the
eigenfunctions of the Hamiltonian Ho. If geV~ is much
less than 6, one can, however, describe the inBuence of
V~ on the eigenfunctions of Ho in the linear approxima-
tion, while the ratio between 8/h and all I"s can still be
arbitrary. In this "small-signal" approximation, Eq. (14)
takes the form

We can describe eKects of irradiation of the double-well
structure by external monochromatic signal of &equency

I

where the sum in the right-hand side can be evaluated
from the unperturbed master equations (13):

) [n1(p) —n2(p)] = p(eVr r~l(cos P —sin P)[(rl, sin P+ r~ cos P)

(3o)

The factor g in Eq. (28) takes into account the fact
that the current I,(t) induced by the tunneling current
I(t) between the wells is smaller than I(t),

I,(t) = gI(t).

x(rl, cos p + I ~ s111 p) + I sill icos y(r, + r„)]-'—X) .
f

The coefficient g in this equation is the same one that
participated in Eq. (2). [One can prove this by noting
that the elementary work of the external electric field
on the small charge dQ = Idt transferred between the
wells can be written as either (qV)dQ or VdQ, where

dQ, = I,dt].
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Note also that in the definition (28) we have disre-
garded the effect of the external rf signal on the currents
fiowing between the wells and external electrodes. This is
legitimate at u u~, where the response to the resonant
rf radiation is dominated by the tunneling current fiowing
between the wells, which oscillates with this frequency.

Figure 4(a) shows the rf conductance (the real part of
the rf admittance) as a function of the external signal fre-

quency for the same values of the dc voltage as in Fig. 3
[see points in Fig. 2(b)], while Fig. 4(b) shows the imag-
inary part of the admittance for the same bias points.
One can see that the rf conductance peaks at u tv~ can
be either positive or negative. Equation (30) says that,
crudely, the conductance is positive on the left slope of
the resonance peak of the dc current [see Fig. 2(b)] while
it is negative on the right slope of the peak. For relatively
low frequencies (hu «~ b, ~) this change of sign is clearly
understandable as a result of the change in the slope of
the dc I—V curve. Let us emphasize, however, that the
result is valid for much higher frequencies ur u~, where
it can be more naturally interpreted as a result of stim-
ulated photon emission by the set of two-level systems
with the dc current-induced population inversion:

) [ni(p) —n2(p)] )0.

This result implies that the double-well structures can
be used not only for generation of (relatively broad-band)
spontaneous Bloch oscillations with central frequency
or~, but also for amplification of external signals with
frequency close to ~z. This effect can also be used for
excitation of narrow-band autonomous oscillations with
frequencies close to u~ in high-q resonant cavities with
intrinsic bandwidth less than p. Such oscillators would be
very similar in their physical properties to conventional
lasers, but would be suitable for the generation of coher-
ent stimulated radiation in the teraherz frequency range
(probably the abbreviation "taser" is more appropriate
in this case).

The main new effect which appears in higher approxi-
mations in Vg is a contribution to the dc current I. This
effect can be readily calculated still assuming b « b, , but
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FIG. 4. (a) Real and (b) imaginary parts of the small-
signal admittance Y(ar) due to tunneling between the wells
as a function of signal I'requency for I'/I', = 3, g = 1/3,
hp/t = 0.2, and several values of the dc voltage [corresponding
to the points in Fig. 2(b)). Dashed line in (a) shows the
amplitude of the peak of the real part of the rf admittance
(i.e., the rf conductance) as a function of the Bloch oscillation
frequency.

and solve the resulting modified equations together with
Eq. (27). The result,

AIV

allowing b' to be of the order of I', I'L, ~. In this case one
can calculate the new terms in the right-hand sides of
Eqs. (13) (arising due to external radiation) in the first
approximation in V~'.

eVg
kig sin P cos QImR

eV+ [eV+ b(sin p —cos2$)]z (iles/2h)2I = 2eI'L, FR~ Z
I LIR( i 0 0 p —4) + 2+(IL+ IR)(I+ ) ( ~B) + 0

(32)

is a generalization of Eq. (17).
Figure 5 shows the e6ect of the monochromatic radi-

ation on dc I —V characteristic of the system, for sev-
eral values of the signal frequency. One can see that the
weak radiation is only important within narrow inter-
vals (Au p) around the Bloch oscillation frequency.
Within these intervals, however, the radiation induces
peaks of the dc current that may be quite comparable to
the autonomous current in the absence of the radiation.
This change of the dc current is due to the radiation-
stimulated transitions between the two resonance levels.
With the further growth of the external signal, the peak
height saturates and its width starts to grow.

VI. ZERO-POINT OSCILLATIONS
AND AVAILABLE POWER

As was mentioned in Sec. IV, the calculated spec-
tral density Sl(u) contains a contribution due to the
zero-point oscillations in the system. According to the
fiuctuation-dissipation theorem (applied to a small exter-
nal ohmic rf load being kept at T = 0), this contribution
can be calculated as

Sit l(~) = 4 ReY((u),
2

where ReY(u) is the rf conductance found in the previous
section.
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Now we can find the power density which is radi-
ated into a cold external load represented by its effective
impedance Z, (u) (as seen by the double-well structure),
under condition that

i
Z, (~) i&&i Y(~) i

Sp(~) = q ReZ, (~)[SI(~) —Sz~ i(ur)]. (33)

The factor g enters because the rf current in the load
is I,(t) = gI(t) rather than I(t) [see Eq. (31) and its
discussion].

According to Eqs. (13), (22), (24), (30), and (33) the
available power density is

In the large-asymmetry limit (] 8 [» t) and small temper-
atures the sum in Eq. (34) equals just 2p max(0, eVsgnb-
b,}. This expression shows clearly that Bloch oscilla-
tions can give real power to an external circuit only when
the number of electrons in the quantum well with higher
quantization level (well 1 in Fig. 1) is larger than that
in another well, so that at least a fraction of electrons
with higher energy can make a quantum transition to the
lower level with radiation of a real (rather than virtual)
photon.

Figure 6 shows the net power of the spontaneous Bloch
radiation into a small broad-band load ReZ, (ur) = R„

6I
j

f

(a) 1", ~/t=1 2.5
qeVA/ht, )=0, 0.05,0' 02

e2t2
St (u)) =q ReZ, (ur) 2h' ~ —~a '+ p'

x ) 2ng(p) [1 —n2(p)] . (34)

P = — Sp(~)d~,2r
(35)

VII. DISCUSSION

as a function of its central &equency u~. At large volt-

ages P grows as (get/h) p ]
eV —h ]. Unfortunately, our

present model (valid only for R, « Y ) does not allow

calculation of the maximum radiation power P, which

should be achieved at R, Y . A proper generalization
of the model, calculation of P „, and quantitative esti-
mations of the power obtainable &om real heterostruc-
tures are presently in progress.
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-

(b)
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v/(t/~ie)
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Statistical characteristics calculated in this work en-

able us to discuss similarities and differences between the
Bloch oscillations and other well-known generators of the
narrow-band radiation. Such a discussion is even more
relevant in light of some recent publications (e.g. , Ref.
23) where the statistical nature of the Bloch oscillations
was not taken. into account and they were pictured as a
direct analog of the Josephson oscillations. This is why
we will start our comparison with Josephson oscillations.
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A. Josephson oscillations

Prequency up of the Josephson oscillations is exactly
related as erg = 6W/h to the change of energy of the
Cooper pair passing through the Josephson junction (see,
e.g. , Ref. 24). In this aspect they are really similar to
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FIG. 5. DC I —V characteristic of an asymmetrical
double-well structure (with 8e —— 5t, I'/I', = 3, hp—/t = 0.2,
and q = 1/3), for several values of the amplitude V~ and fre-

quency cu of external radiation: (a) hem/t = 12.5, (b) hu jt = 5,
(c) hem/t = 1.5.

FIG. 6. Net power of the spontaneous Bloch radiation into

a small broad-band load R as a function of the central fre-

quency un of the radiation, for q = 1/3 and several values of
the I'/I', ratio. The curves practically coincide in the region

V & —bo/qe, and do not depend on hp/t at hp « t
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B. Tien-Gordon systems

Opposite to the Josephson oscillations is a limit of com-
pletely uncorrelated systems, e.g. , single-barrier tunnel
junctions and other two-terminal structures which obey
the Tien-Gordon theory. 25 The main result of this theory
was that the dc I—V characteristic of the structure in the
presence of an external rf voltage with amplitude V~ and
&equency u can always be expressed via its autonomous
I —V characteristic (for V~ = 0):

(hu) ( e

where J„(z) are the Bessel functions of the first kind.
Other results for such Tien-Gordon systems are that the
spectral density Sl(u) of their current and the small-
signal conductance ReY(u) can also be uniquely ex-
pressed via the autonomous dc I —V characteristic:

Sl(ur) = e ) I(V 6 h~/e, 0) coth
eV + hu)

2T (37)

ReY(cu) = I
/
V+, 0

/

—I
/

V —,0
f

e —f h~ 'r —( h~
2her ( e ) ( e )

(38)

The Tien-Gordon model was 6rst developed to describe
quasiparticle (rather than Josephson) tunneling in super-
conducting junctions, zs 2r but later Eqs. (36)—(38) were
repeatedly derived for systems with quite difFerent mech-
anisms of electron transfer (see, e.g. , Ref. 28). Presently,
it is believed that these equations are valid for any two-
terminal system which satis6es two conditions.

the Bloch oscillations in semiconductor heterostructures.
However, the Cooper pairs in the superconducting elec-
trodes of a Josephson junction form a coherent quant»m
condensate, i.e., their wave functions are completely cor-
related. Thus, the Josephson oscillations are a sum of
completely correlated quant»m transitions of the Cooper
pairs. As a result, the net amplitude of these oscillations
is virtually constant even if the phase Buctuations are
considerable and the radiation line is relatively broad.
Hence, despite the fact that the spectral density Sl(u)
of the Josephson oscillations may look quite similar to
that shown in Fig. 3, the statistical density distribution
p(A) of their amplitude is close to h(A —A0) (the same
is true, of course, for any well-developed classical oscilla-
tors, lasers well above their excitation threshold, etc.).

In contrast, the Bloch oscillations are a sum of inde-
pendent contributions of quantum transitions of uncorre-
lated electrons. This fact results in the broad probability
distribution of their amplitude —see Eq. (25). Such a
distribution is typical for spontaneous radiation in other
quantum systems and for any wide-band noise passed
through a narrow-band 61ter.

(1) Electron wave functions on the left and right of
the system are incoherent both for the same electron and
for difFerent electrons (these conditions are violated and
hence Eqs. (37), (38) are not applicable, e.g. , in the bal-
listic channels, or Cooper-paired electrons in Josephson
junctions24).

(2) Each electron passes the system in a single "leap, "
and the leaps of difFerent electrons are uncorrelated (in
contrast, e.g. , to the situation in systems with correlated
single-electron tunneling; see, e.g. , Ref. 31).

On the basis of the previous discussion, one might
think that the Bloch oscillator considered in this work
might satisfy these conditions, and its characteristics
should obey Eqs. (36)—(38). Nevertheless, this is not
completely true. In fact, according to these equations the
videoresponse, spectral density, and rf conductance, con-
sidered as functions of (her/e), should closely reproduce
all resonance peaks of the autonomous dc I —V curve.
By contrast, for our double-well system, the width of the
peak in the autonomous dc I —V curve is determined
by the interwell tunneling amplitude t, while the peaks
in videoresponse, spectral density and rf conductance are
determined by the (much smaller) scattering parameter
p.2s (For the videoresponse, this fact was first noticed by
Gurvitz. )

There are two reasons for such a difference.
(1) When the levels in the two wells are close (~ b

~

t), the external dc voltage afFects substantially the basic
energy spectrum of the system; see Eq. (7).

(2) Even outside this region (i.e. , at
~

h ~&) t), if scat-
tering and tunneling rates I', I'I. R are strongly different,
the electron population of the energy levels can be far
from thermal equilibriuxn (i.e., different Rom that of the
corresponding external electrodes).

Both these effects are localized within the range Ab
(18). It is straightforward to check that if all "photon
points" V + nhur/e in Eqs. (36)—(38) avoid this range,
and g = 1, these equations describe all our results.

To summarize, we have carried out an analysis of the
statistical properties of spontaneous Bloch oscillations
generated by the double-well semiconductor structures.
Our results show, in particular, that this process is closer
to noise generated by other simple physical systems with
uncorrelated transfer of incoherent electrons than to self-
oscillations in the classical meaning of the word. On the
other hand, inversion of level population in these struc-
tures may allow their use as generators of coherent stim-
ulated radiation in the teraherz &equency band. The
statistical properties of such "tasers" would be similar to
those of the lasers.
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