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Abstract 

 

 

The room-temperature Raman signatures from graphene layers on sapphire and glass 

substrates were compared with those from graphene on GaAs substrate and on the 

standard Si/SiO2 substrate, which served as a reference. It was found that while G 

peak of graphene on Si/SiO2 and GaAs is positioned at 1580 cm-1 it is down-shifted 

by ~5 cm-1 for graphene-on-sapphire (GOS) and, in many cases, splits into doublets 

for graphene-on-glass (GOG) with the central frequency around 1580 cm-1. The 

obtained results are important for graphene characterization and its proposed 

graphene applications in electronic devices.  
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Graphene has attracted major attention from the physics and device research communities [1-

6]. In addition to its unusual physical properties it also shows a promise as a material for the 

electronic applications. Geim and Novoselov [7] suggested that a band gap can be induced in 

the bi-layer graphene (BLG) and engineered in the single-layer graphene (SLG) by the spatial 

confinement or lateral superlattice-type potential. The extremely high room temperature 

carrier mobility (up to 15,000 cm2V-1s-1 [1-3]) represents an advantage over Si, making 

graphene a candidate for applications in the circuits beyond the conventional complementary 

metal-oxide-semiconductor technology. Raman spectroscopy has been successfully utilized 

as a convenient technique for identifying and counting graphene layers [8-13]. Specifically, it 

was shown [8] that the evolution of the 2D band Raman signatures with the addition of each 

extra layer of graphene can be used to accurately count the number of layers. We have 

recently reported the temperature dependence of the G peak and 2D band in graphene on 

Si/SiO2 substrates [10-11]. The extracted values of the temperature coefficients χG for the G 

peak in the spectra of SLG and BLG are -(1.6±0.2)×10-2cm-1/K and - (1.5±0.06)×10-2cm-1/K, 

respectively [11]. 

 

Most, if not all, Raman spectroscopy studies of graphene reported to date were limited to 

either graphene layers on Si/SiO2 substrates [8-13] with a very carefully selected thickness of 

the SiO2 layer, or to tiny dispersed flat carbon clusters, which have also been referred to as 

graphene [14-15]. The reason for choosing a specific substrate for the mechanically exfoliated 

graphene is the observation that it becomes visible in an optical microscope when placed on 

top of Si wafer with 300-nm thick oxide layer [1-2]. Thus, it is easier to carry out Raman 

spectroscopy of graphene layers on the standard Si/SiO2 (300 nm) substrates because one can 

pin-point the exact location of a graphene sample (which typically has the lateral dimensions 

of few micrometers) and carry out an initial identification of the number of layers under the 

optical microscope. Future studies of graphene’s unique properties and its application as an 

electronic material call for graphene integration with a variety of different materials and 

substrates. However, presently very little is known about the visibility or property of 

graphene on substrates other than Si/SiO2, and there is no confirmed experimental tool for 

determining the number of layers in few-layer graphites on these substrates. Thus, it is useful 

to expand Raman spectroscopy as a nanometrology tool for graphene and graphene-based 

devices to various substrates. Another important motivation for the study of the substrate 

influence on graphene Raman spectrum is a fundamental question of the role played by the 
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graphene – substrate interface. The measurements of Raman spectra from graphene on 

different substrates can shed light on the strength of the graphene – substrate coupling. 

 

In this letter we report the room-temperature spectroscopic Raman microscopy of the single-

layer and few-layer graphene (FLG) deposited on different substrates. SLG and FLG were 

obtained by micromechanical cleavage of bulk graphite using the process outline in Refs. [1-

2]. An identical procedure was used to place graphene layers on a reference Si/SiO2 (300 nm) 

substrate and on a set of distinctively different substrates, which included n-type (100) GaAs 

wafer, A-plane (11-20) sapphire (Al2O3) and glass substrates. The number of layers was 

determined from the visual inspection of graphene on Si/SiO2 (300 nm), atomic force 

microscopy (AFM) and analysis of the 2D band features using the approach outlined in Ref. 

[8]. For GaAs substrate, we only succeeded in transferring five-layer graphene as confirmed 

by AFM and Raman spectrum of the 2D band. The AFM inspection of graphene on sapphire 

and glass substrates revealed spots with thickness <2 nm, indicating the presence of less than 

4 layers. Figs. 1 (a) and (b) show AFM images of graphene on Si/SiO2 and glass substrates, 

respectively. The following Raman analysis allowed us to conclude that the transferred 

graphene samples on sapphire and glass are most likely SLG. In order to provide additional 

verification for the number of layers and graphene quality we carried out transport studies for 

some of the samples on the Si/SiO2 substrate by attaching the electrodes using the standard 

nanofabrication techniques, which we described elsewhere [6, 10]. The electrical 

measurements were performed at low temperature in a sorption pumped 3He refrigerator. The 

extracted high values of the carrier mobility (~8,000 – 15,000 cm2/Vs) and the anomalous 

“half-integer” plateau, which is a unique signature of the band structure of graphene, attested 

to the high quality of our samples.  

 

The Raman microscopy was carried out using the Renishaw instrument under 488-nm 

excitation at low power level to avoid the laser heating effects [16]. A Leica optical 

microscope with a 50x objective was used to collect the backscattered light from the 

graphene samples. The Rayleigh light was rejected by the holographic notch filter with a 160 

cm-1 cut off frequency. Since it was important to separate the effect of the substrate from 

spatial variations in the graphene properties, we took 10-20 spectra in different location for 

each of the examined samples. A special care has been taken to make sure that all locations 

for the Raman scans are selected within the sample region with the same number of layers. 

Fig. 2 (a) presents a close-up of 2D bands for graphene as the number of layers increases 
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from one to five. The observed features are consistent with the previously reported data [8, 

10-11]. After taking Raman spectra from graphene layers on the standard substrate we 

investigated graphene placed on GaAs, sapphire and glass substrates. The adherence of SLG 

and FLG to different substrates was similar. To avoid the fabrication damage and charge 

transfer no contacts were fabricated on the samples subjected to detail Raman study.   

 

Fig. 2 (b) shows a typical spectrum of FLG on n-type GaAs substrate. Two pronounced 

features in the spectrum are the G peak at 1580 cm-1 and the 2D band at ~2736 cm-1. The 

decomposition and analysis of the 2D band features confirm that the number of layers is five. 

The measured spectrum features, e.g. G-peak position and shape and 2D-band shape, are very 

similar to those observed for FLG on the standard Si/SiO2 (300 nm) substrate. Three curves in 

Fig. 2 (b) correspond to the spectra taken from three different locations. Since there is 

virtually no variations in the spectra one can conclude that the sample is uniform and the 

measured results are reproducible. G peak recorded for graphene on GaAs substrate is 

essentially in the same location and of the same shape as the one measured by us [10-11] and 

others [8-9] for graphene layers on Si/SiO2 (300 nm).       

 

The spectra measured for graphene on the glass and sapphire substrates were much noisier 

than those for graphene on Si/SiO2 (300 nm) or GaAs substrates. Specifically, the spectra 

from graphene on a glass substrate manifested a large number of peaks attributed to the 

amorphous nature of the substrate, which resulted in many local vibrational modes. At the 

same time, it was always possible to identify G peak and 2D band. Fig. 3 (a) and (b) present a 

close-up of G peak for a single-layer graphene-on-sapphire (GOS) and graphene-on-glass 

(GOG), respectively. One can see in Fig. 3 (a) that G peak in GOS spectra is red-shifted from 

its position in the spectra from SLG on a standard substrate by ~5 cm-1. This shift is observed 

for all locations; a small spot-to-spot variation in the peak position of about ~1 cm-1 is equal 

to the spectral resolution of the instrument. An unusual feature in the spectra from GOG in 

Fig. 3 (b) is a splitting of G peak into an asymmetric doublet for approximately half of the 

examined locations. When the G peak is not split, it is located at 1579 cm-1, which is 

consistent with its position in graphene on the standard substrate. In the spectra where G peak 

is split, its central frequency is ~1580 cm-1. Thus, the G-peak position in GOG spectra is 

close to the one in SLG spectra on the standard Si/SiO2 (300 nm) substrate. The G-peak 

splitting in Raman spectra from some locations on GOG can be attributed to presence of the 

randomly distributed impurities or surface charges. The localized vibrational modes of the 
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impurities can interact with the extended phonon modes of graphene leading to the observed 

splitting. The G-peak positions and their full width at half maximum (FWHM) for different 

substrates are summarized in Table I. One can see that FWHM for G feature from GOG is the 

largest. The latter is likely related to the amorphous nature of the glass substrate and 

inhomogeneous properties of graphene layers on a given substrate.  

 

Table I: Raman G Peak Position for Graphene Layers on Different Substrates 

Substrate G Peak Position 
(cm-1) 

G Peak FWHM 
(cm-1) 

Si/SiO2 1580 15 
GaAs 1580 15 
Sapphire 1575 20 
Glass 1580* 35 
 
*This value corresponds to the middle frequency for a doublet if G peak is split. 

 

The relatively weak dependence of G band on the substrate can be explained by that fact that 

it is made up of the long-wavelength optical phonons of particular symmetry. The G-band 

optical phonons in graphene represent the in-plane vibrations since the E2g symmetry of this 

band restricts the atomic motion to the plane of the carbon atoms [17]. According to the first-

principle calculations, the out-of-plane vibrations in graphene are not coupled to the in-plane 

motion [18]. The dependence is stronger for graphene on the A-plane sapphire substrate, 

where we observed consistent ~5 cm-1 shift of G mode. The latter can be related to the 

specifics of the carbon – sapphire binding similar to the phenomenon reported in Ref. [19]. 

Han et al. [19] observed formation of the highly aligned single-wall carbon nanotube (SW-

CNT) arrays on A-plane and R-plane sapphire substrates with negligible miscut, i.e., without 

apparent involvement of the step edges. Such spontaneous self-orientation was not observed 

for other types of the substrates. From their AFM studies the authors concluded that strong 

CNT – sapphire substrate interaction plays a major role in the CNT alignment. Similar 

interaction forces may lead to the G-mode position change in our GOS samples. Another 

possibility is a presence of the surfaces charges, which lead to the changes in the graphene 

lattice parameter with the corresponding peak shift.     
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Figure 1: Atomic-force microscopy image of graphene layers on a glass substrate.  
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Figure 2: (a) Raman spectrum of 2D band of graphene on Si/SiO2 substrates as a number of 

layers changes from one to five. The analysis of the 2D band was used to verify the number 

of graphene layers. (b) Raman spectrum of graphene layers on GaAs substrate. Three spectra 

are taken from different locations on the sample to demonstrate reproducibility and sample 

uniformity.  
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Figure 3: (a) Raman spectra of graphene-on-sapphire (GOS) and (b) Raman spectra of 

graphene-on-glass. In both cases the G-peak region is shown. Three spectra for each substrate 

are taken from different locations.  

 

 

 


