Spectral Domain Optical Coherence Tomography

Ultra-high Speed, Ultra-high Resolution Ophthalmic Imaging

Teresa C. Chen, MD; Barry Cense, PhD; Mark C. Pierce, PhD; Nader Nassif, BS; B. Hyle Park, PhD; Seok H. Yun, PhD; Brian R. White, BS; Brett E. Bouma, PhD; Guillermo J. Tearney, MD, PhD; Johannes F. de Boer, PhD

Objective: To introduce a new ophthalmic optical coherence tomography technology that allows unprecedented simultaneous ultra-high speed and ultra-high resolution.

Methods: Using a superluminescent diode source, a clinically viable ultra-high speed, ultra-high resolution spectral domain optical coherence tomography system was developed.

Results: In vivo images of the retina, the optic nerve head, and retinal blood flow were obtained at an ultra-high speed of 34.1 microseconds (ms) per A-scan, which is 73 times faster than commercially available optical coherence tomography instruments. Single images (B-scans) consisting of 1000 A-scans were acquired in 34.1 ms, allowing video rate imaging at 29 frames per second with an axial resolution of 6 µm. Using a different source in a slightly slower configuration, single images consisting of 500 A-scans were acquired in 34 ms, allowing imaging at 29 frames per second at an axial resolution of 3.5 µm, which is 3 times better than commercially available optical coherence tomography instruments. The amount of energy directed into the eye in both cases, 600 µW, is less than that of the Stratus OCT3 and is safe for intrabeam viewing for up to 8 hours at the same retinal location.

Conclusion: Spectral domain optical coherence tomography technology enables ophthalmic imaging with unprecedented simultaneous ultra-high speed and ultra-high resolution.

Arch Ophthalmol. 2005;123:1715-1720

Optical coherence tomography (OCT) allows noninvasive imaging of ocular structures. Optical coherence tomographic imaging is analogous to B-mode ultrasound imaging, except that it uses light instead of sound. The interface between different ocular tissues can be determined by changes in reflective properties between the tissues. Current experimental ophthalmic OCT instruments provide more structural information than any other ophthalmic diagnostic technique. With the latest commercially available machine (Stratus OCT3; Carl Zeiss Meditec Inc, Dublin, Calif), axial resolutions of better than 10 µm can be achieved, and cross-sectional retinal images consisting of 512 A-scans can be acquired in 1.28 seconds. Nearly all commercial and research OCT systems developed to date are based on time domain OCT technology (TDOCT). In TDOCT, an individual A-scan is acquired by varying the length of the reference arm in an interferometer, such that the scanned length of the reference arm corresponds to the A-scan length. The main impediment to more widespread clinical use of TDOCT technology is the limited resolution and slow acquisition time. Simultaneous increases in imaging speed and resolution, without sacrificing image quality, can only be brought about by a fundamentally different approach.

An alternative technology is spectral domain OCT (SDOCT), also known as Fourier domain OCT. In SDOCT, no mechanical scanning of the reference arm is needed. Instead, a spectrum is measured with a spectrometer in the detection arm of the interferometer and converted to depth information by Fourier transformation. The detection method using a spectrometer is much more efficient and as a result SDOCT is several orders of magnitude more sensitive than TDOCT. The higher sensitivity of SDOCT technology allows for detection of weaker signals and for faster data acquisition. A sensitivity improvement of 21.7 dB (150-fold) compared with an equivalent TDOCT system was recently shown. This has allowed a considerable increase in imaging speed and resolution without compromising image quality and has recently led to in vivo video OCT retinal imaging at 29 frames per second with an axial resolution of 6 µm or 3.5 µm, depending on the light source.

Similar to Doppler ultrasound, spectral domain optical Doppler tomography (SDODT) can measure retinal blood flow.
Here we will show several images from the new ultra-high speed, ultra-high resolution superluminescent diode–based SDOCT and SDODT systems. The potential clinical implications of this improved technology will be discussed.

METHODS

PATIENT

The right eye of a 39-year-old Caucasian man was imaged in vivo, using our SDOCT system. The right eye was normal except for being plano -1.00\(^{11003}\)/H11003\(^{11003}\)105°. Best corrected vision was 20/20. Massachusetts Eye and Ear Infirmary and Massachusetts General Hospital institutional review board approval was obtained.

SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY

A-scans were acquired at a rate of 29 000 per second (6 µm axial resolution) and 14 500 per second (3.5 µm axial resolution). In Figure 1, the experimental setup is shown.\(^9,12\) The light sources were a commercially available superluminescent diode (SLD) (Superlum Diodes Ltd, Moscow, Russia) with a polarized power of 4.6 mW and a full width at half maximum spectral width of 50 nm centered at 840 nm (6 µm resolution) and an experimental source (BroadLighter; Superlum) with a power of 3.7 mW and a full width at half maximum spectral width in the system of 150 nm centered at 875 nm (3.5 µm resolution). The power incident on the eye was limited to 600 µW, in accordance with the American National Standards Institute maximum permissible exposure for continuous intrabeam viewing.\(^13\) Light returning from sample and reference arm paths was recombined in the detection arm and sent to a high-speed, high-efficiency spectrometer.\(^9,10\)

For SDODT, the measured phase stability of our system is more than 25 times better than previously quantified figures for TDODT systems, and our acquisition speed corresponds to a minimum detectable Doppler shift of ±25 Hz and a dynamic range of 600, defined as the ratio of maximum to minimum detectable Doppler shift.\(^11\) Images were acquired at 29 frames per second (1000 A-lines per frame) and subsequently processed. The pupil was not dilated for acquisition of any of the images. Because the eyes were not dilated, we did not acquire charge coupled device images of the retina.

RESULTS

Figure 2A shows a horizontal linear scan through the neuroretinal rim and peripapillary retina. Figure 2B shows another linear scan through the center of the optic nerve head. Figure 2A and B were obtained in one twenty-ninth of a second and consists of 1000 A-scans with an axial resolution of 6 µm. Figure 3A shows a horizontal linear scan through the fovea and was acquired in one twenty-ninth of a second and consists of 500 A-scans with an axial resolution of 3.5 µm. For comparison, Figure 3B shows a scan of the same area with a source providing 6 µm resolution, showing the improved sharpness of the OCT images at 3.5 µm resolution.

Spectral domain optical Doppler tomography shows a horizontal linear scan through an area inferior to the optic nerve head (Figure 4). Blood vessels produce a shadowing effect in underlying regions in the intensity image (Figure 4A). In the corresponding phase image (Figure 4B), stationary regions are gray, with positive and negative Doppler shifts mapped in black or white, enabling the bidirectional nature of blood flow to be visualized. Figure 4 was acquired in one twenty-ninth of a second with a resolution of 6 µm. Although not shown in Figure 4, pulsatile blood flow can clearly be visualized in real-time in arterioles and venules as small as 10 µm in diameter.\(^11\)
The ultra-high speed imaging capabilities of SD-OCT allow 3-dimensional reconstruction of the optic nerve and peripapillary retina, as shown in Figure 5, with this volume assembled from 400 images with an axial resolution of 6 µm, acquired in a total time of 14 seconds.

Compared with traditional TDOCT, SDOCT technology yields unprecedented acquisition speeds and significantly higher axial resolutions using a potentially affordable SLD source. This system produced high quality images while operating at safe ocular exposure levels, even below that of the commercially available OCT3 system.

Ultra-high resolution TDOCT systems with axial resolutions of less than 3 µm have been developed using a titanium-sapphire laser. Although these ultra-broad bandwidths enable axial resolutions better than standard SLD, the principal disadvantage of the current femtosecond titanium-sapphire laser technology is still its high cost and complexity, which currently precludes its widespread clinical use. A more fundamental limitation of this current ultra-high resolution TDOCT technology is its slow acquisition speed, which is a consequence of the inverse relation between resolution and speed. Although the prototype system had clinically impractical acquisition times of 4 to 12 seconds at an axial scan rate of 50 Hz for a 200 to 600 transverse pixel image, the current system runs at 250 Hz. In SDOCT, there is no fundamental limiting relation between resolution and speed, and any source can be used without compromising image quality. Superluminescent diodes have been used for commercial OCT imaging systems and the advancement in SLD technology has made available a new generation of ultra-broad bandwidth light sources that are compact, relatively inexpensive, and require low maintenance. The combination of these new light sources with SDOCT technology has led to in vivo retinal imaging with simultaneous ultra-high axial resolutions and ultra-high speeds.

Spectral domain technology not only offers structural retinal imaging but also allows imaging of retinal blood flow similar to Doppler ultrasound. The flow sensitivity of Doppler OCT greatly depends on the mechanical or phase stability of the OCT system and on how fast images can be taken. Because of the dramatic speed improvement of SDOCT and the absence of moving parts in the reference arm, the phase stability is greatly improved. Spectral domain optical Doppler tomography allows real-time imaging of pulsatile blood flow within blood vessels as small as 10 µm and as deep as the choroid.

Spectral domain optical coherence tomography’s higher acquisition speeds realistically allow for a shift from 2-dimensional to 3-dimensional (3-D) images of ocular anatomy (Figure 5). For example, a 6.2 × 6.2 mm area with 62 parallel images 100 µm apart can be obtained in 2.1 seconds. Scan areas can be adjusted and scan intervals can be decreased as needed. In glaucoma, instead of only peripapillary circular scans or linear scans, SDOCT scans would allow 3-D mapping of the nerve fiber layer of the entire posterior pole. In diabetic retinopathy, 3-D SDOCT maps of structure and blood flow would show the exact location of clinically significant macular edema and would allow more accurate quantification of macular thickness. In macular degeneration, 3-D maps can delineate the exact extent and depth of choroidal neovascular membranes and may minimize the need for repeat invasive fluorescein angiography. Large choroidal le-
sessions can be mapped, since scans up to 10 mm in width can be obtained quickly with ultra-high resolution. This may allow for better monitoring of posterior intraocular tumors since it affords higher resolution than B-scan ultrasound.20-22 Because of SDODT’s ability to create 3-D maps of the retina and to map areas of active blood flow more accurately, this new technology may decrease the need for invasive fluorescein angiography or enable earlier diagnosis of diseases with localized poor blood flow (e.g., vasculitis, impending branch retinal vein occlusion, etc).

Spectral domain optical coherence tomography may aid in the management of glaucoma, the second leading cause of blindness in the world.23,24 Nerve fiber layer (NFL) assessment is important in glaucoma because it is directly correlated with loss of ganglion cells, which is assumed to be a primary event in glaucomatous damage.25 Since the peripapillary NFL can be on the order of 50 to over 200 µm thick, current resolutions of 10 to 15 µm may not be enough to detect a significant change over time. Therefore, accurate ultra-high resolution SDODT measurements of NFL thinning may allow for earlier detection and treatment of glaucoma. It has been suggested that NFL thinning may occur as early as 6 years prior to permanent vision loss and may occur prior to clinically detectable optic nerve head changes.26 Spectral domain optical coherence tomography also provides a direct assessment of NFL thickness, unlike scanning laser polarimetry (e.g., GDx; Laser Diagnostic Technologies, San Diego, Calif), which indirectly calculates NFL thickness through depth-resolved double-pass phase retardation measurements.27

Figure 3. Layers are labeled as follows: RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; ELM, external limiting membrane; IPRL, interface between the inner and outer segments of the photoreceptor layer; RPE, retinal pigment epithelium; C, choriocapillaris and choroid. The blood vessels are circled with darker circles. Structures in the outer plexiform layer are circled with lighter circles. A highly reflective spot in the center of the fovea is marked with an R. A, Ultra-high resolution spectral domain optical coherence tomographic (SDOCT) image of the foveal region acquired in one twenty-ninth of a second consisting of 500 A-scans at a resolution of 3.5 µm. The image measures 3.1 × 0.61 mm. The image is expanded in the vertical direction by a factor of 2 to provide more detail. Two layers at the location of the RPE at the left and right are marked with arrows and an asterisk. B, Similar image taken with a standard SDOCT system employed with a superluminescent diode. The axial resolution of the image was 6 µm and the image measures 3.2 × 0.8 mm. The individual layers are less distinct, and structures in the outer plexiform layer are not seen. The differing scattering properties of the RPE are not clearly seen, as in the higher-resolution image.
The ultra-high speed nature of SDOCT also minimizes image distortion caused by involuntary eye movements, although motion artifacts are still present in 3-D volume sets acquired over a few seconds. Structures not previously visible with conventional TD OCT may be more easily visualized with SDOCT (Figure 2 and Figure 3). Recent studies have also shown that there is a statistically significant difference in the central 5.9 to 6.0 mm macular volume between normal and glaucomatous eyes. Therefore, SDOCT may better enable detection of changes in the macular retinal ganglion cell layer, which is only 4 to 6 cells thick.

In eye diseases where OCT technology has already been shown to be useful, further improvements in SDOCT technology may improve the diagnosis and treatment of these many eye diseases, decrease the need for other invasive ophthalmic tests, and enhance understanding of eye disease pathophysiology.

Submitted for Publication: April 9, 2004; final revision received January 3, 2005; accepted January 9, 2005.

Correspondence: Teresa C. Chen, MD, Massachusetts Eye and Ear Infirmary, Glaucoma Service, 243 Charles St, Boston, MA 02114 (teresa_chen@meei.harvard.edu).

Financial Disclosure: Drs Bouma, Tearney, and de Boer have a patent pending.

Funding/SUPPORT: This study was supported in part by research grants from the National Institutes of Health (RO1 EY014975 and R24 EY12877). The technical development was supported in part by research grants from the Department of Defense (F4 9620-01-1-0014) and a gift from Dr and Mrs J. S. Chen to the optical diagnostics program of the Wellman Center of Photomedicine.

REFERENCES

Figure 4. Spectral domain optical Doppler tomography (SDODT) intensity image of the peripapillary retina (A) and corresponding Doppler image which shows bidirectional flow (B) acquired in one twenty-ninth of a second consisting of 1000 A-scans. Image size is 1.6 mm wide × 1.2 mm deep. In the Doppler image (B), flow is gray scale coded as a positive (white), negative (black), or no Doppler shift (gray). From left to right, the white circles indicate a small vein, an artery-vein pair showing bidirectional flow, and a large vein.

Figure 5. Three-dimensional reconstruction of the optic nerve head and the peripapillary retina, compiled from 400 individual frames mapping out a retinal area 6.2 × 5 mm, and 1.7 mm in depth. Total acquisition time was 14 seconds.

coma, age-related macular degeneration, and diabetic retinopathy). The ultra-high speed nature of SDOCT also minimizes image distortion caused by involuntary eye movements, although motion artifacts are still present in 3-D volume sets acquired over a few seconds.

