Outline

• **Smart Meter Privacy**
 - Concerns
 - Possible Solutions

• **Smart Grid Security**
 - Load Altering Attacks
 - False Data Injection Attacks

• Impact on **Electricity Market**
Smart Meter

- Smart meter is the key element in:
 - Smart Grid
 - Advanced Metering Infrastructure

- Enables two-way communications between users and utilities.
 - Pricing Information
 - Consumption Readings
• Unlike traditional meters:

 • **Manual** Reading

 • **Monthly** Reading

• Smart meters:

 • **Automated** reading (wireless links e.g., in WMNs)

 • Once every 15 minutes (common rate)

 • Once every **minute** (can support)
Some of the applications of smart meters:

- **Utility**: Collect, measure, and analyze consumption data for
 - Grid management
 - Outage notification
 - Billing purposes

- **Consumer**: Better options to manage their load / bills.
 - Energy Detective®, Google Power meter®, ...
Smart Meter Privacy Concerns

• Key Issue:
 • Data recorded by smart meters must be highly detailed
 • It may show what individual appliances a user is using.

• Furthermore:
 • The readings are transmitted over wireless channels
 • Q: What if the transmissions is intercepted?
People have raised some concern about smart meters:

- www.youtube.com/watch?v=8JNFr_j6kdI&feature=relmfu
- www.youtube.com/watch?v=FLeCTaSG2-U

Just Google “smart meter privacy concerns”!

Q: How can smart meters reveal

- What exact appliance you use at what exact time?
• Each appliance has a “signature”:
Example 1: Criminals can use the data

- To schedule burglary
 - They can figure out if you are not at home.
 - House alarm systems have their own signature

- Pre-identify what items they want to steal.
 - Plasma TVs have their own signature.
 - Laptop computers have their own signature
Example 2: Privacy violation

- Your *living pattern* can be revealed
 - When you wake up.
 - When you take shower
 - When you watch TV

- You can even tell what TV program / movie is watched!
 - Fluctuations at brightness of movies → Load changes!
Smart Meter Privacy Concerns

• **Example 3**: Health Insurance Company can

 • Determine which *medical devices* you used.

 • Pre-existing conditions

 • Different insurance rate

• **Example 4**: Your landlord can tell

 • How many people live here.

 • When you have a party!
Smart Meter Privacy Solutions

• **Q**: How can we resolve these privacy concerns?

• **Q**: How can we assure that:

 • Appliance signatures cannot be identified.

 • It is not revealed that you have no power consumption

• Some solutions may involve privacy / performance tradeoffs.
• Smart meters can support minute-by-minute reporting.

• The current reading rate is once every 15 minutes
 • It may still reveal most appliance signatures.

• **Q:** Does it help to *increase reading intervals*?
 • What would be the problem?
 • Is there any trade-off?
• **Q**: What if users have local renewable generation?

• In that case, we have

\[
\text{Meter reading} = \text{Load} - \text{Local Renewable Generation}
\]

• It is just like we are adding *noise* to meter readings.

• **Q**: Can we actually add intentional noise to reading?
Smart Meter Privacy Solutions: Storage

• **Q:** What if we have a battery at home?

• By charging and discharging the battery we can

 • Have impact on the reported meter reading.

 \[
 \text{Meter Reading} = \text{Load} - \text{Discharge} + \text{Charge}
 \]

• This is called “**Load Signature Moderation**”.
Smart Meter Privacy Solutions: Storage

• **Q:** What if we have a battery at home?

Two approaches to moderate / hide the signature
So far, we have seen methods to hide the signatures.

Q: What if we are on vacation?

Our meter readings indicate no/limited consumption.

Some solutions:

- Always report the load, even if the load is zero.
- Encrypt the reported reading. (Q: What else can you do?)
In Smart Grid all sectors interact via two-way communications:
• We can identify **three types** of cyber attacks against smart grid:

- **Cyber Attack (Type I)**
- **Cyber Attack (Type II)**
- **Cyber Attack (Type III)**
• We can identify **three types** of cyber attacks against smart grid:
• We can identify **three types** of cyber attacks against smart grid:

- **Cyber Attack (Type I)**
- **Cyber Attack (Type II)**
- **Cyber Attack (Type III)**
We can identify three types of cyber attacks against smart grid:

1. Cyber Attack (Type I)
2. Cyber Attack (Type II)
3. Cyber Attack (Type III)

Hacking a Power Plant = Hacking Hundred of Thousands of Meters

Larger Scale to Be Effective
We will discuss two types of cyber attacks:

- **Load Altering Attacks (Type III)**
 - Targets Smart Meters and ECS Devices
 - Can affect Demand Response and System Stability

- **False Data Injection Attacks (Type II)**
 - Targets PMUs and possibly Smart Meters
 - Can affect Situational Awareness and System Stability
Load Altering Attacks

- Smart meter with an embedded ECS:

\[\chi_a : \text{Energy consumption schedule for appliance } a. \]
Load Altering Attacks

- Smart meter with an embedded ECS:

 ![Diagram]

- **Q**: What if the price signal is compromised?
Load Altering Attacks

• Changes in price can change the load scheduled by ECS:

Reduced price will encourage increasing load at that hour.
Load Altering Attacks

- Changes in price can change the load scheduled by ECS:
Load Altering Attacks

• Assume that a hacker compromises the price data:
 • Sent to hundreds of thousands of ECS devices.

• A large number of users jump into the reduced price hour.
 • Q: Similar to load synchronization problem?
 • This can cause a load spike at an already peak hour.

• Price signals have to be source authenticated.
Load Altering Attacks

- One option to authenticate received messages:

 ![Flowchart]

 MAC: Message Authentication Code

- In general, source authentication is not very easy.
Load Altering Attacks

- Smart meter with an embedded ECS:

Q: What if the DLC signal or the ECS itself are compromised?
False Data Injection Attacks

• They target PMUs and wide-area measurement systems:
False Data Injection Attacks

• False data injection results in

 • Sending *incorrect data* to control centers.

• **Incorrect decisions** made by control center may lead to:

 • Inefficient Dispatch / Power Quality Degradation

 • Unnecessary Load Shedding

 • False Alarm / Erroneous Fault Detection

 • System Instability
False Data Injection Attacks

• A tempting target for an FDIA is state estimation.

• **Northeast Blackout** initiated by error in state estimation

\[
P_{31} + P_{32} - L_3 = 0
\]

\[
P_{31} = B_{31} (\theta_3 - \theta_1)
\]

\[
P_{32} = B_{32} (\theta_3 - \theta_2)
\]

(B\textsubscript{31} and B\textsubscript{32} are obtained from Y - Bus Matrix)
A tempting target for an FDIA is state estimation.

Northeast Blackout initiated by error in state estimation

Several variables / states in the system

\[P_{31} + P_{32} - L_3 = 0 \]

\[P_{31} = B_{31}(\theta_3, \theta_1) \]

\[P_{32} = B_{32}(\theta_3, \theta_2) \]

\((B_{31} \text{ and } B_{32} \text{ are obtained from Y - Bus Matrix}) \)
• State estimation problem:

Problem: An $n \times 1$ vector of **unknown states** \mathbf{x} is aimed to be estimated given an $m \times 1$ vector of **measurements** \mathbf{z}, where $m \gg n$. We know that

$$z = H \mathbf{x} + \mathbf{e}$$

- **Measurement**
- **Measurement Errors / Noise**
- **Topology + Kirchhoff’s Circuit Laws**
False Data Injection Attacks

• **Example**: States can be

 • States: Phase Angles at Each Bus

 • Measurements: Power Injection at Each Bus

 Power Flow on Each Link

• We can write down the power flow equations in form of:

 \[z = H x + e \]
False Data Injection Attacks

• We would like to find a state estimation \(\hat{x} \) such that

\[
\min_{\hat{x}} \| z - H \hat{x} \|
\]

• That is, we apply the least square error criterion.

• In most cases, we rather apply weighted least-square criterion:

\[
\min_{\hat{x}} \sum_{i=1}^{m} \left(\frac{z_i - H_i \hat{x}}{\sigma_i} \right)^2
\]

Q: What is the weight?
False Data Injection Attacks

• For regular least-square criterion, we have

\[\hat{x} = (H^T H)^{-1} H^T z \]

• For weighted least square criterion, we have

\[\hat{x} = (H^T W H)^{-1} H^T W z \]

where

\[W = diag\left[\sigma_1^{-2}, \sigma_2^{-2}, \ldots, \sigma_m^{-2} \right] \]
False Data Injection Attacks

• If something goes wrong with measurements z:

 • Then, the state estimation solution will be incorrect!

• We can think of two scenarios:

 • Faulty Sensors / Bad Measurement (Natural Cause)

 • False Data Injection Attack (Intentional)
False Data Injection Attacks: Bad Data Detection

- **Q:** How can we detect a bad measurement?

- **Key Idea:** Measurements should reasonably match each other!
 - Bad data is detected if we see “inconsistency” in data.

- We define measurement residual as:

 \[r = z - H \hat{x} \]
False Data Injection Attacks: Bad Data Detection

• **Q:** Do you expect low or high residual for accurate estimation?

• **Residue Test:**

 • Is $\|r\| = \|z - H \hat{x}\| \leq \tau$?

 \[\begin{align*}
 &\text{Yes: Pass} \\
 &\text{No: Bad Data}
 \end{align*} \]

• Here, norm is l_2 or l_∞ and τ is a design constant.
False Data Injection Attacks

• **Q**: How about FDIA and intentional error injection?

• **Key Idea**: Compromise the sensor reading:

\[z_a = z + a \]

• The new state estimation solution becomes (Q: Why?):

\[\hat{x}_{bad} = (H^T W H)^{-1} H^T W z_a \]
False Data Injection Attacks

- **Q:** Can the attacker choose a such that
 - The attack is not detected?

- **A:** Yes, a should be a linear combination
 - Of the column vectors of matrix H. (**Q:** Why?)
False Data Injection Attacks

\[\hat{x}_{bad} = \]

\[r_a = z_a - H \hat{x}_{bad} \]
False Data Injection Attacks

• **Q:** Can we pick an arbitrarily large c?

• That is, can we have

\[\|c\| \to \infty \ ? \]

• **Q:** How does it affect \hat{x}_{bad} ?

• **Q:** How does it affect r_a ?
False Data Injection Attacks

• Note that in general, the attacker is interested in

 • **Maximizing** State Estimation Error:

 \[
 \max_{\alpha} \left\| \hat{x}_{bad} - \hat{x} \right\|
 \]

 • **Minimizing** the Chance of **Being Detected**:

 \[
 \min_{\alpha} \left\| r_{\alpha} - r \right\|
 \]
• Next, we consider three scenarios:

 • Some sensors are protected:

 • For some $i \in \{1, \ldots, m\}$, it is required that $a_i = 0$.

 • Some state variables can be verified independently:

 • For some $j \in \{1, \ldots, n\}$, it is required that $c_i = 0$.

 • Both cases above happen simultaneously.
False Data Injection Attacks: Protected Sensors

• **Q:** What if some *sensors* are protected?

 • For some $i \in \{1, \ldots, m\}$, it is required that $a_i = 0$.

• Example: Sensor 2 is protected:

\[
\begin{bmatrix}
 a_1 \\
 0 \\
 a_3 \\
 a_4 \\
\end{bmatrix}_{4 \times 1} =
\begin{bmatrix}
 h_{11} & h_{12} \\
 h_{21} & h_{22} \\
 h_{31} & h_{32} \\
 h_{41} & h_{42} \\
\end{bmatrix}_{4 \times 2}
\begin{bmatrix}
 c_1 \\
 c_2 \\
\end{bmatrix}_{2 \times 1}
\]
False Data Injection Attacks: Protected Sensors

• **Case 1: Targeted Attack**

 • The attacker intends to inject particular c_1 and c_2.

• Example: What if $c_1 = 4$ and $c_2 = -1$?

$$
\begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4
\end{bmatrix}_{4 \times 1} =
\begin{bmatrix}
3 & 2 \\
1 & 4 \\
2 & 1 \\
5 & 3
\end{bmatrix}_{4 \times 2}
\begin{bmatrix}
4 \\
-1
\end{bmatrix}_{2 \times 1}$$
• **Case 1: Targeted Attack**

 • The attacker intends to inject particular \(c_1 \) and \(c_2 \).

• Example: What if \(c_1 = 3 \) and \(c_2 = -1 \)?

\[
\begin{bmatrix}
 a_1 \\
 0 \\
 a_3 \\
 a_4
\end{bmatrix}_{4 \times 1}
=
\begin{bmatrix}
 3 & 2 \\
 1 & 4 \\
 2 & 1 \\
 5 & 3
\end{bmatrix}_{4 \times 2}
\begin{bmatrix}
 3 \\
 -1
\end{bmatrix}_{2 \times 1}
\]
Case 1: Targeted Attack

- The attacker intends to inject particular c_1 and c_2.

General Approach:

- Evaluate Hc to see if the rows for protected sensors is zero.
- If they are zero: simply use the resulted a_i values.
- Otherwise, the attack is not possible!
False Data Injection Attacks: Protected Sensors

- **Case 2: Random Attack**
 - The attacker intends to inject any $c_1 \neq 0$ and $c_2 \neq 0$.
 - As long as the attack is not detected.

- **Key Question:**
 - Given $a_i = 0$ for all protected sensors:
 - Can we find any $c_1 \neq 0$ and $c_2 \neq 0$ such that $a = Hc$?
Case 2: Random Attack

The attacker intends to inject any \(c_1 \neq 0 \) and \(c_2 \neq 0 \).

Example: Sensor 2 is protected:

\[
\begin{bmatrix}
a_1 \\
0 \\
a_3 \\
a_4 \\
\end{bmatrix}_{4\times1}
= \begin{bmatrix}
3 & 2 \\
1 & 4 \\
2 & 1 \\
5 & 3 \\
\end{bmatrix}_{4\times2}
\begin{bmatrix}
c_1 \\
c_2 \\
\end{bmatrix}_{2\times1}
Case 2: Random Attack

The attacker intends to inject any \(c_1 \neq 0 \) and \(c_2 \neq 0 \).

Example: Sensor 2 is protected:

- Clearly any point \((c_1, c_2)\) on line \(c_1 + 4c_2 = 0 \) would work.

Q: Can you show this on a \(c_1 / c_2 \) space?
False Data Injection Attacks: Protected Sensors

• **Case 2**: Random Attack

 • The attacker intends to inject any $c_1 \neq 0$ and $c_2 \neq 0$.

• Example: Sensors 2 and 4 are protected:

$$
\begin{bmatrix}
 a_1 \\
 0 \\
 a_3 \\
 0
\end{bmatrix}_{4 \times 1}
=
\begin{bmatrix}
 3 & 2 \\
 1 & 4 \\
 2 & 1 \\
 5 & 3
\end{bmatrix}_{4 \times 2}
\begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix}_{2 \times 1}$$
False Data Injection Attacks: Protected Sensors

- **Case 2:** Random Attack

 - The attacker intends to inject any $c_1 \neq 0$ and $c_2 \neq 0$.

- Example: Sensors 2 and 4 are protected:

 - **Q:** Can you show this on a c_1 / c_2 space?

 - **Q:** Is the attack even possible? What is the problem?
False Data Injection Attacks: Protected Sensors

- **Case 2: Random Attack**

 - The attacker intends to inject any \(c_1 \neq 0 \) and \(c_2 \neq 0 \).

- **Theorem [Liu, et al.]:**

 If the attacker can compromise \(k \) specific meters, where \(k \geq m - n + 1 \), there always exist attack vectors \(a = Hc \) such that \(c \neq 0, a \neq 0 \), and for all protected sensors, we have \(a_i = 0 \).

Q: Can this explain the results in the previous example?
False Data Injection Attacks: Verifiable States

• **Q:** What if some state variables can be verified independently?

 • For some $j \in \{1, \ldots, n\}$, it is required that $c_j = 0$.

 • Otherwise, operator will detect the attack! (Q: Why?)

 • The detection will be different from residue test.

• **Q:** How can the operator independently verify some states?
False Data Injection Attacks: Verifiable States

• **Q:** What if some state variables can be verified independently?

 • For some \(j \in \{1, ..., n\} \), it is required that \(c_j = 0 \).

• Example: State 1 can be verified independently:

\[
\begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4
\end{bmatrix}_{4 \times 1} =
\begin{bmatrix}
h_{11} & h_{12} \\
h_{21} & h_{22} \\
h_{31} & h_{32} \\
h_{41} & h_{42}
\end{bmatrix}_{4 \times 2}
\begin{bmatrix}
0 \\
c_2
\end{bmatrix}_{2 \times 1}
\]
False Data Injection Attacks: Verifiable States

• **Q:** What if some *state variables* can be *verified independently*?
 • For some $j \in \{1, \ldots, n\}$, it is required that $c_j = 0$.

• Example: State 1 can be verified independently:
 • It is very similar to a targeted attack: $c_1 = 0$.
 • The attack is *always* feasible if no sensor is protected.

• **Q:** Why?
False Data Injection Attacks: Combined Scenario

• **Q:** What if both cases happen at the same time:

 • For some $i \in \{1, \ldots, m\}$, it is required that $a_i = 0$.

 • For some $j \in \{1, \ldots, n\}$, it is required that $c_i = 0$.

• Example: **State 1** can be verified and **sensor 2** is protected:

 \[
 \begin{bmatrix}
 a_1 \\
 0 \\
 a_3 \\
 a_4
 \end{bmatrix}_{4 \times 1} =
 \begin{bmatrix}
 h_{11} & h_{12} \\
 h_{21} & h_{22} \\
 h_{31} & h_{32} \\
 h_{41} & h_{42}
 \end{bmatrix}_{4 \times 2}
 \begin{bmatrix}
 0 \\
 c_2
 \end{bmatrix}_{2 \times 1}
 \]
False Data Injection Attacks: Combined Scenario

• Again, it will be a feasibility problem.
 • We can always analyze and see if the attack is feasible.

• Q: What if the attack is not feasible the way that we discussed?
 • Would the attacker give up?
 • What can the attacker do if “perfect” attack is not feasible?
• Recall that in general, the attacker is interested in

 • **Maximizing State Estimation Error:**

 \[
 \max_a \left\| \hat{x}_{bad} - \hat{x} \right\|
 \]

 • **Minimizing the Chance of Being Detected:**

 \[
 \min_a \left\| r_a - r \right\|
 \]
False Data Injection Attacks: Combined Scenario

• For perfect attack:

 • State estimation error will be infinity.

 • The difference between new and old residue will be zero.

 • Minimum expected chance of attack being detected.

• Q: Can you formulate these problems for “imperfect” attacks?

• The attacker may also look at the “damage level” of the attack.
Impact on Electricity Market

• Q: Is it possible for an electricity market participant
 • To financially benefit from implementing an FDIA?

• Key idea:
 • State estimation results have impact on LMP:
 • LMP: Locational Marginal Price
 • LMP is used in various electricity market transactions.
Impact on Electricity Market

- **LMP**: Cost to serve the next MW of load (i.e., increasing the load) at a specific location, using the lowest production cost of all available generators, while observing all transmission limits.

- The line congestion information particularly affects LMP.
 - State estimation is used to evaluate congestion.
 - Phase angle difference between two sides of link.

- An FDIA can increase or decrease LMP([θ₁,..., θₙ]).
Generators sell electricity at LMP.

They rather change $[\theta_1, ..., \theta_n]$ to increase LMP($[\theta_1, ..., \theta_n]$).

Loads/utilities buy electricity at LMP.

They rather change $[\theta_1, ..., \theta_n]$ to decrease LMP($[\theta_1, ..., \theta_n]$).

You can find more details about this problem in Xie, et al.

• G. Kalogridis, C. Efthymiou, S.Z. Denic, T.A. Lewis, and R. Cepeda, "Privacy for Smart Meters: Towards Undetectable Appliance Load Signatures", in Proc. of the IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, Oct. 2010.
References

