Price-Maker Economic Bidding in Two-Settlement Pool-Based Markets: The Case of Time-Shiftable Loads

Mahdi Kohansal, Student Member, IEEE and Hamed Mohsenian-Rad, Senior Member, IEEE

Abstract—In this paper, a new scenario-based stochastic optimization framework is proposed for price-maker economic bidding in day-ahead and real-time markets. The presented methodology is general and can be applied to both demand and supply bids. That is, no restrictive assumptions are made on the characteristics of the pool and its agents. However, our focus is on the operation of time-shiftable loads with deadlines, because they play a central role in creating load flexibility and enhancing demand response and peak-load shaving programs. Both basic and complex time-shiftable load types are addressed, where the latter includes time-shiftable loads that are uninterruptible, have per-time-slot consumption limits or ramp constraints, or comprise several smaller time-shiftable subloads. Four innovative analytical steps are presented in order to transform the originally nonlinear and hard-to-solve price-maker economic bidding optimization problem into a tractable mixed-integer linear program. Accordingly, the global optimal solutions are found for the price and energy bids within a relatively short amount of computational time. A detailed illustrative case study along with multiple case studies based on the California energy market data are presented. It is observed that the proposed optimal price-maker economic bidding approach outperforms optimal price-maker self-scheduling as well as even-load-distribution.

Keywords: Price-maker economic bidding, price bids, energy bids, day-ahead market, real-time market, time-shiftable loads, demand response, stochastic mixed-integer linear programming.

I. INTRODUCTION

Time-shiftable loads, a.k.a. deferrable loads with deadlines, play a central role in creating load flexibility and enhancing demand response and peak-load shaving programs. Some examples of time-shiftable loads include: charging plug-in electric vehicles [1], [2], irrigation pumps [3], batch processes in data centers and computer servers [4]–[6], intelligent pools [7], water heaters [8], industrial equipment in process control and manufacturing [9], [10], and various home appliances such as washing machine, dryer, and dish-washer [11]–[16]. Recent efforts have been made to incorporate time-shiftable loads into the wholesale electricity markets [17]–[18]–[20]. For example, the problem of aggregating residential or other time-shiftable loads using utility-driven incentives is discussed in [17], [20], [21]. Optimal demand bidding for time-shiftable loads using dynamic programming is presented in [22]–[24], where the time shiftable load of interest is assumed to be price-taker. That is, they are assumed to be relatively small so that their operation does not have impact on the cleared market price in the day-ahead or real-time markets. In [25], [26], the authors address wholesale electricity market participation of large and price-maker consumers with time-shiftable and dispatchable loads. However, the focus is on self-scheduling operation. That is, the load entity is assumed to submit only energy bids, but not price bids. As a result, power procurement is not subject to any condition on the clearing market price.

A. Comparison with Related Work

In this paper, our focus is on price-maker economic bidding for time-shiftable loads. Unlike in [22]–[24], we do consider the size of the load and hence the impact of demand bids on the cleared market price. Also, unlike in [25], [26], we address the more general case where the time-shiftable load submits not only energy bids but also price bids. Accordingly, since an economic demand bid is not cleared in the day-ahead market if its price component is lower than the cleared market price, our
focus is on two-settlement markets, where energy is procured from both day-ahead and real-time markets [27]–[29].

Besides the literature on time-shiftable loads, this paper is also comparable with the literature on price-maker electricity market participation, e.g., for generating companies. In particular, on the methodology side, this paper is a direct and major extension of the analysis in [30], where the authors presented a model for price-maker self-scheduling of generating companies in a pool-based electricity market. As a result, in principle, our proposed price-maker economic bidding approach is applicable to not just time-shiftable loads but also generating companies or other types of market participants such as in the examples in [30], and its related studies in [31]–[34].

B. Summary of Technical Contributions

We can summarize the contributions in this paper as follows:

- A new scenario-based stochastic optimization framework is proposed for price-maker economic bidding in coupled day-ahead and real-time markets. Without loss of generality, the focus is on time-shiftable loads with deadlines. Besides their core time-flexibility features, other characteristics of time-shiftable loads are also considered, e.g., whether the time-shiftable load is uninterruptible, has per-time-slot consumption limits or ramp constraints, or comprises several smaller time-shiftable subloads.

- The analysis in this paper advances the existing price-taker results in [22], because here we consider price-maker market participation of time-shiftable loads. This study also advances the existing self-scheduling results in [30], because here we consider economic bidding.

- Four innovative analytical steps are presented in order to transform the originally nonlinear and hard-to-solve price-maker economic bidding optimization problem into a tractable mixed-integer linear program. Accordingly, we find the global optimal solutions for the price and energy bids to day-ahead market and the energy bids to real-time market within a short amount of computational time.

- A detailed illustrative example and also multiple case studies based on the California energy market data are presented. The impact of different market scenarios are assessed. The performance is compared with optimal price-maker self-scheduling and even-load-distribution. The proposed design outperforms both of these methods.

II. PROBLEM STATEMENT

A. Two-Settlement Electricity Market

In a two-settlement wholesale electricity market, e.g., in California [27], Pennsylvania-Jersey-Maryland [29], and Texas [28], energy is traded in both day-ahead and real-time markets. Buyers and sellers participate in these markets by submitting demand and supply bids, respectively. The bids that are submitted to the day-ahead market indicate an energy quantity and possibly also a price quantity. Following the terminology that is used in the California energy market, we refer to a bid without price quantity as Self-Schedule and a bid with price quantity as Economic [27]. An Economic bid indicates that the buyer (seller) is willing to purchase (sell) the given quantity of energy only if the price is less (more) than or equal to the price bid. A Self-Schedule bid indicates that the buyer (seller) is willing to purchase (sell) the given quantity of energy, regardless of the price. For instance, 51% of the total submitted supply bid capacity and 11% of the total submitted demand bid capacity in California during January 2014 was of type Economic [35]. Mathematically, a Self-Schedule bid is a special case of an Economic bid with an infinite price quantity. As a result, there are more energy cost minimization opportunities for loads in Economic bidding than Self-Schedule bidding. The demand bids that are submitted (or metered) to the real-time market only indicate energy quantities. That is, they are always of type Self-Schedule [27].

B. Day-Ahead Market

Let T denote the number of daily market intervals. For example, in an hourly market, we have $T = 24$. At each time slot t, let x_t and p_t denote the energy bid and the price bid that are submitted to the day-ahead market, respectively. The market outcome depends on not only the bids, but also the market price quota curve\(^1\) [30], [36], as shown in Fig. 1. There are one self-schedule and two economic bids shown in this figure. The self-schedule bid does not include a price component; therefore, it is a straight vertical line. Moving this line towards left or right can affect the price, as explained in the price-maker self-scheduling analysis in [30]. In contrast, price-maker economic bids have both energy and price components. As a result, they appear in form of step functions and they

\(^1\)For a given hour, the *quota* of a price maker generator or load is defined as the amount of power that it generates or consumes in that hour. The curve that expresses how the market-clearing price changes as this quota changes is called residual generation/demand curve [36] or simply price quota curve [30]. While the price quota curve is *step-wise monotonically decreasing* with respect to generation level for a price maker generator, it is *step-wise monotonically increasing* with respect to consumption level for a price maker consumer. Price quota curves are stepwise because the supply/demand bids are assumed to be blocks of generation/load at given prices [30]. These curves embody the effects of all interactions with competitors and the market rules [30], [36]. The price quota curves of a price maker generator or load can be obtained by either market simulation or using forecasting procedures [36], [37].
the cleared market price and the cleared energy quantity are modeled as one-dimensional functions \(\phi_t(y_t) \) and \(g_t(y_t) \), respectively. The former is a step-wise increasing function of energy bid \(y_t \). The latter is simply a straight identity line, i.e., \(g_t(y_t) = y_t \).

D. Time-Shiftable Load

A time-shiftable load is a task that requires a certain total energy to finish, but its operation can be scheduled any time within a pre-determined tolerable time frame, where the end of such time frame is the deadline to finish operation. As we explained in Section I, time-shiftable loads have recently received a great deal of attention due to their role in demand response programs, e.g., see [1]–[15]. A time-shiftable load is modeled with at least three parameters \(\alpha, \beta, \) and \(e \). Parameters \(\alpha \) and \(\beta \) indicate the beginning and the end of the time interval at which the operation of the load can be scheduled, where \(1 \leq \alpha < \beta \leq T \). A higher \(\beta - \alpha \) indicates more time flexibility. Parameter \(e \) denotes the total energy that must be consumed in order to finish the time-shiftable task of interest.

The above model describes a time-shiftable load in its most generic form. However, in general, a time-shiftable load may have other characteristics, including inter-temporal dynamics, or other types of constraints. Several of such additional characteristics will be discussed in details later in Section IV.

E. Optimization Problem

In practice, market participation is prone to uncertainty. Let \(K \) denote the number of random market scenarios. At each time slot \(t \) and for each scenario \(k = 1, \ldots, K \), the multipliers \(q_{t,k}(x_t, p_t) \lambda_{t,k}(x_t, p_t) \) and \(q_{t,k} \phi_{t,k}(y_t,k) \) indicate the cost of power procurement from the day-ahead market and the real-time market, respectively. The price-maker economic bidding problem for time-shiftable loads can be formulated as

\[
\begin{align*}
\min & \quad \frac{1}{K} \sum_{k=1}^{K} \sum_{t=\alpha}^{\beta} q_{t,k}(x_t, p_t) \lambda_{t,k}(x_t, p_t) + y_{t,k} \phi_{t,k}(y_{t,k}) \\
\text{s.t.} & \quad \sum_{t=\alpha}^{\beta} q_{t,k}(x_t, p_t) + y_{t,k} = e, \quad \forall k,
\end{align*}
\]

(1)

where the optimization variables are \(x_t, p_t \), and \(y_{t,k} \) for any time slot \(t \) and any market scenario \(k \). The objective in (1) is to minimize the expected value of the total energy expenditure to finish the task. The equality constraints assure that for all scenarios, the total energy purchased matches the target energy level \(e \). Note that, the energy bids to real-time market act as recourse variables [39], [40]. As a result, they are specific to each scenario \(k \) to purchase a total of \(e - \sum_{t=\alpha}^{\beta} q_{t,k}(x_t, p_t) \) MWh energy from the real-time market under scenario \(k \).

The nonlinear mixed-integer stochastic optimization problem in (1) is difficult to solve. In fact, it is recently shown in [22] that even if the time-shiftable load is small and price-taker, i.e., \(\lambda_{t,k} \) and \(\phi_{t,k} \) are independent of the bids, then
solving problem (1) is still a challenging task due to the nonlinearity in $q_{t,k}(x_t, p_t)$. Nevertheless, we will next present an innovative method to find the global optimal solution of problem (1) within a short amount of computational time.

III. PROPOSED SOLUTION METHOD

In this section, we explain how we can reformulate problem (1) as a mixed-integer linear program. This is done by taking four key steps. The reformulated optimization problem is then solved efficiently using various mixed-integer linear programming solvers, such as CPLEX [41] or MOSEK [42].

A. Problem Reformulation Steps

Step 1: At each time slot t and for each scenario k, we define $q_{t,k}^{th}(p_t)$ as the maximum energy quantity that can be cleared in the day-ahead market when the price bid is p_t. For example, from Fig. 2(b), we have $q_{t,k}^{th}(36) = 15$ MWh. This is because the cleared energy quantity for any bid with $p_t = 36$ is bounded by 15 MWh. In other words, if the time-shiftable load seeks to procure more than 15 MWh, then it must submit a price bid that is higher than $36. As another example, we have $q_{t,k}^{th}(48) = 38$ MWh. A method to model $q_{t,k}^{th}(p_t)$ will be provided later in Step 3. However, for now, assume that the value of $q_{t,k}^{th}(p_t)$ is given for each price bid p_t. We can write

$$q_{t,k}(x_t, p_t) = \begin{cases} x_t, & \text{if } x_t \leq q_{t,k}^{th}(p_t), \\ q_{t,k}^{th}(p_t), & \text{otherwise}. \end{cases} \quad (2)$$

In other words, we have

$$q_{t,k}(x_t, p_t) = \min \left\{ x_t, q_{t,k}^{th}(p_t) \right\}. \quad (3)$$

Next, we define a new auxiliary variable as

$$\theta_{t,k} = \begin{cases} 0, & \text{if } x_t \leq q_{t,k}^{th}(p_t), \\ 1, & \text{otherwise}. \end{cases} \quad (4)$$

From (2), (3) and (4), we have

$$\theta_{t,k} = 0 \Leftrightarrow q_{t,k}(x_t, p_t) = x_t \leq q_{t,k}^{th}(p_t) \quad (5)$$

and

$$\theta_{t,k} = 1 \Leftrightarrow q_{t,k}(x_t, p_t) = q_{t,k}^{th}(p_t) \leq x_t. \quad (6)$$

Interestingly, for any time slot t and any market scenario k, the relationships in (5) and (6) are equivalent to

$$\theta_{t,k} \in \{0, 1\}, \quad (7)$$

$$x_t - \theta_{t,k} L \leq q_{t,k}(x_t, p_t) \leq x_t, \quad (8)$$

$$q_{t,k}^{th}(p_t) - (1 - \theta_{t,k}) L \leq q_{t,k}(x_t, p_t) \leq q_{t,k}^{th}(p_t), \quad (9)$$

where L is a large number compared to load size e. To show the above, we note that, if $\theta_{t,k} = 0$, then (8) and (9) become

$$x_t \leq q_{t,k}(x_t, p_t) \leq x_t, \quad (10)$$

$$q_{t,k}^{th}(p_t) - L \leq q_{t,k}(x_t, p_t) \leq q_{t,k}^{th}(p_t). \quad (11)$$

The lower bound and the upper bound in (10) are equal. Also, since L is a large number, the lower bound constraint in (11) is not binding. Therefore, we can conclude that the relationship in (5) holds. If $\theta_{t,k} = 1$, then (8) and (9) become

$$x_t - L \leq q_{t,k}(x_t, p_t) \leq x_t, \quad (12)$$

$$q_{t,k}^{th}(p_t) \leq q_{t,k}(x_t, p_t) \leq q_{t,k}^{th}(p_t), \quad (13)$$

The lower bound constraint in (11) is not binding. From this and because the lower bound and the upper bound in (10) are equal, we can conclude the relationship in (6).

Step 2: At each time slot t and for each scenario k, the cleared market price in the day-ahead market is obtained as

$$\lambda_{t,k}(x_t, p_t) = \begin{cases} \lambda_{t,k}(x_t, \infty) & \text{if } x_t \leq q_{t,k}^{th}(p_t), \\ p_t & \text{otherwise}, \end{cases} \quad (14)$$

where $\lambda_{t,k}(x_t, \infty)$ is the price quota curve for an infinite price bid, i.e., the price curve under Self-Scheduling [30]. Next, we note that the cost of power procurement from the day-ahead market at time slot t and under scenario k is modeled as

$$C_{t,k}(x_t, p_t) = q_{t,k}(x_t, p_t) \lambda_{t,k}(x_t, p_t). \quad (15)$$

From (2) and (14), we can rewrite the above expression as

$$C_{t,k}(x_t, p_t) = \begin{cases} x_t \lambda_{t,k}(x_t, \infty) & \text{if } x_t \leq q_{t,k}^{th}(p_t), \\ q_{t,k}^{th}(p_t) p_t & \text{otherwise}. \end{cases} \quad (16)$$

If $x_t \leq q_{t,k}^{th}(p_t)$ then $\lambda_{t,k}(x_t, \infty) \leq p_t$. Accordingly, we have $x_t \lambda_{t,k}(x_t, \infty) \leq q_{t,k}^{th}(p_t) p_t$. Also, if $x_t > q_{t,k}^{th}(p_t)$ then $\lambda_{t,k}(x_t, \infty) \geq p_t$. Accordingly, we have $x_t \lambda_{t,k}(x_t, \infty) \geq q_{t,k}^{th}(p_t) p_t$. Therefore, we can rewrite (16) as

$$C_{t,k}(x_t, p_t) = \min \left\{ x_t \lambda_{t,k}(x_t, \infty), q_{t,k}^{th}(p_t) p_t \right\}. \quad (17)$$

From (4), (16) and (17), we have

$$\theta_{t,k} = 0 \Leftrightarrow C_{t,k}(x_t, p_t) = x_t \lambda_{t,k}(x_t, \infty) \leq q_{t,k}^{th}(p_t) p_t \quad (18)$$

and

$$\theta_{t,k} = 1 \Leftrightarrow C_{t,k}(x_t, p_t) = q_{t,k}^{th}(p_t) p_t \leq x_t \lambda_{t,k}(x_t, \infty). \quad (19)$$

Again, for any time slot t and any market scenario k, the relationships in (18) and (19) are equivalent to (7) and

$$x_t \lambda_{t,k}(x_t, \infty) - \theta_{t,k} L \leq C_{t,k}(x_t, p_t) \leq x_t \lambda_{t,k}(x_t, \infty), \quad (20)$$

$$q_{t,k}^{th}(p_t) p_t - (1 - \theta_{t,k}) L \leq C_{t,k}(x_t, p_t) \leq q_{t,k}^{th}(p_t) p_t, \quad (21)$$

where L is again a large number. To show the above equivalence, we note that if $\theta_{t,k} = 0$, then (20) and (21) become

$$x_t \lambda_{t,k}(x_t, \infty) - L \leq C_{t,k}(x_t, p_t) \leq x_t \lambda_{t,k}(x_t, \infty), \quad (22)$$

$$q_{t,k}^{th}(p_t) p_t - L \leq C_{t,k}(x_t, p_t) \leq q_{t,k}^{th}(p_t) p_t. \quad (23)$$

The lower bound and the upper bound in (22) are equal. Also, since L is a large number, the lower bound constraint in (23) is not binding. Therefore, we can conclude that the relationship in (18) holds. If $\theta_{t,k} = 1$, then (20) and (21) become

$$x_t \lambda_{t,k}(x_t, \infty) - L \leq C_{t,k}(x_t, p_t) \leq x_t \lambda_{t,k}(x_t, \infty), \quad (24)$$

$$q_{t,k}^{th}(p_t) p_t \leq C_{t,k}(x_t, p_t) \leq q_{t,k}^{th}(p_t) p_t. \quad (25)$$

The lower bound constraint in (24) is not binding. From this and because the lower bound and the upper bound in (25) are equal, we can conclude the relationship in (19).
Step 3: At each time slot t and for each scenario k, the threshold $q^\text{th}_{t,k}(p_t)$ is a step-wise linear function of price bid p_t. For example, in Fig. 1, $q^\text{th}_{t,k}(p_t)$ is 0 for any $p_t < 30$, it is 8 for any $30 \leq p_t < 34$, it is 15 for any $34 \leq p_t < 38$, and so on and so forth. Following the general methodology in [30] for modeling step-wise linear functions, we can write:

$$q^\text{th}_{t,k}(p_t) = \sum_{s=1}^{n_{t,k}} x^\text{min}_{t,k,s} u_{t,k,s},$$

(26)

where

$$p_t = \sum_{i=1}^{n_{t,k}} (a_{t,k,s} + u_{t,k,s} p^\text{min}_{t,k,s}),$$

(27)

Here, $n_{t,k}$ is the number of price steps in the step-wise linear function $q^\text{th}_{t,k}(p_t)$, parameter $p^\text{min}_{t,k,s}$ is the minimum price in step number s, parameter $x^\text{min}_{t,k,s}$ is the cleared energy in step number s, parameter u^max_{s} is the width of step number s, $v_{t,k,s}$ and $a_{t,k,s}$ are auxiliary variables. For example, in Fig. 1, we have $p^\text{min}_{t,k,1} = 0, p^\text{min}_{t,k,2} = 30, p^\text{min}_{t,k,3} = 34, p^\text{min}_{t,k,4} = 38, x^\text{min}_{t,k,1} = 0, x^\text{min}_{t,k,2} = 8, x^\text{min}_{t,k,3} = 15, x^\text{min}_{t,k,4} = 20, u^\text{max}_{t,k,1} = 30, a_{t,k,2} = 4, a_{t,k,3} = 4, a_{t,k,4} = 3$, etc. We can also write

$$q^\text{th}_{t,k}(p_t) p_t = \sum_{s=1}^{n_{t,k}} x^\text{min}_{t,k,s} (c_{t,k,s} + v_{t,k,s} p^\text{min}_{t,k,s}).$$

(31)

Step 4: Finally, at each time slot t and for each scenario k, we can again adjust the modeling approach in [30] and write:

$$x_t \lambda_{t,k}(x_t, \infty) = \sum_{s=1}^{m_{t,k}} \lambda_{t,k,s} (b_{t,k,s} + v_{t,k,s} x^\text{min}_{t,k,s}),$$

(32)

and

$$x_t = \sum_{s=1}^{m_{t,k}} (b_{t,k,s} + v_{t,k,s} x^\text{min}_{t,k,s}),$$

(33)

and

$$y_t \phi_{t,k}(y_t) = \sum_{s=1}^{o_{t,k}} \phi_{t,k,s} (c_{t,k,s} + w_{t,k,s} y^\text{min}_{t,k,s}),$$

(34)

and

$$y_t = \sum_{s=1}^{o_{t,k}} (c_{t,k,s} + w_{t,k,s} y^\text{min}_{t,k,s}),$$

(35)

where

$$v_{t,k,s} \in \{0, 1\},$$

(36)

$$w_{t,k,s} \in \{0, 1\},$$

(37)

$$0 \leq b_{t,k,s} \leq v_{t,k,s} u^\text{max}_{t,k,s},$$

(38)

$$0 \leq c_{t,k,s} \leq w_{t,k,s} u^\text{max}_{t,k,s},$$

(39)

$$\sum_{s=1}^{n_{t,k}} u_{t,k,s} = 1,$$

(40)

$$\sum_{s=1}^{o_{t,k}} w_{t,k,s} = 1,$$

(41)

Here, parameters $m_{t,k,s}, x^\text{min}_{t,k,s}$, and $b^\text{max}_{t,k,s}$ characterize the step-wise linear day-ahead price quota curve $\lambda_{t,k}(x_t, \infty)$ under Self-Schedule bidding; and $o_{t,k}, y^\text{min}_{t,k,s}$, and $c^\text{max}_{t,k,s}$ characterize the step-wise linear real-time price quota curve $\phi_{t,k}(y_t)$. For example, based on the curves in Figs. 1 and 2, we have $b^\text{max}_{t,k,1} = 8, b^\text{max}_{t,k,2} = 7, b^\text{max}_{t,k,3} = 5, etc.$

B. Resulted Mixed-Integer Linear Program

After applying the changes in the four steps in Section III-A, we can reformulate optimization problem (1) as

$$\min \frac{1}{K} \sum_{k=1}^{K} \sum_{t=\alpha}^{\beta} C_{t,k} + \sum_{s=1}^{o_{t,k}} \phi_{t,k,s} (c_{t,k,s} + w_{t,k,s} y^\text{min}_{t,k,s}),$$

(31)

s.t.

$$x_t - \theta_{t,k} L \leq q_{t,k}, \quad \forall t, k,$$

(42)

$$q_{t,k} \leq x_t, \quad \forall t, k,$$

(43)

$$q^\text{th}_{t,k} - (1 - \theta_{t,k}) L \leq q_{t,k}, \quad \forall t, k,$$

(44)

$$q_{t,k} \leq q^\text{th}_{t,k}, \quad \forall t, k,$$

(45)

$$\sum_{s=1}^{m_{t,k}} \lambda_{t,k,s} (b_{t,k,s} + v_{t,k,s} x^\text{min}_{t,k,s}) - \theta_{t,k} L \leq C_{t,k}, \quad \forall t, k,$$

(46)

$$C_{t,k} \leq \sum_{s=1}^{m_{t,k}} \lambda_{t,k,s} (b_{t,k,s} + v_{t,k,s} x^\text{min}_{t,k,s}), \quad \forall t, k,$$

(47)

$$\sum_{s=1}^{m_{t,k}} x^\text{min}_{t,k,s} (c_{t,k,s} + v_{t,k,s} p^\text{min}_{t,k,s}) - (1 - \theta_{t,k}) L \leq C_{t,k}, \quad \forall t, k,$$

(48)

$$C_{t,k} \leq \sum_{s=1}^{m_{t,k}} x^\text{min}_{t,k,s} (c_{t,k,s} + v_{t,k,s} p^\text{min}_{t,k,s}), \quad \forall t, k,$$

(49)

$$q^\text{th}_{t,k} = \sum_{s=1}^{n_{t,k}} x^\text{min}_{t,k,s} u_{t,k,s}, \quad \forall t, k,$$

(50)

$$p_t = \sum_{i=1}^{n_{t,k}} (a_{t,k,s} + u_{t,k,s} p^\text{min}_{t,k,s}), \quad \forall t, k,$$

(51)

$$x_t = \sum_{s=1}^{m_{t,k}} (b_{t,k,s} + v_{t,k,s} x^\text{min}_{t,k,s}), \quad \forall t, k,$$

(52)

$$y_{t,k} = \sum_{s=1}^{o_{t,k}} (c_{t,k,s} + w_{t,k,s} y^\text{min}_{t,k,s}), \quad \forall t, k,$$

(53)

$$0 \leq u_{t,k,s} \leq u^\text{max}_{t,k,s}, \quad \forall t, k, s,$$

(54)

$$0 \leq b_{t,k,s} \leq v_{t,k,s} u^\text{max}_{t,k,s}, \quad \forall t, k, s,$$

(55)

$$0 \leq c_{t,k,s} \leq w_{t,k,s} u^\text{max}_{t,k,s}, \quad \forall t, k, s,$$

(56)

$$\sum_{s=1}^{n_{t,k}} u_{t,k,s} = 1, \quad \forall t, k,$$

(57)

$$\sum_{s=1}^{o_{t,k}} w_{t,k,s} = 1, \quad \forall t, k,$$

(58)

$$u_{t,k,s}, w_{t,k,s}, v_{t,k,s} \in \{0, 1\}, \quad \forall t, k, s.$$
where the optimization variables are \(x_t, p_t, y_t, \theta_t, q_t, q^b_t, C_{t,k}, a_{t,k,s}, b_{t,k,s}, c_{t,k,s}, u_{t,k,s}, v_{t,k,s}, \) and \(w_{t,k,s} \) for any time slot \(t \), any market scenario \(k \), and any step number \(s \). The problem in (42) is a mixed-integer linear program.

IV. MORE COMPLEX TIME-SHIFTABLE LOADS

The model that we used in our analysis so far describes a time-shiftable load in its most generic form. In this section, we explain how other characteristics of time-shiftable loads can also be incorporated into the analysis. More specifically, we show that the optimal bidding framework in this paper can include any other feature of time-shiftable loads, as long as the feature can be modeled as linear mixed-integer constraints.

A. Per-Time-Slot Consumption Limits

Some time-shiftable loads may have limitations on their consumption level at each time slot. Let \(Z^\text{min} \) and \(Z^\text{max} \) denote the minimum and maximum consumption levels that the time-shiftable load of interest can support. We must have

\[
Z^\text{min} r_{t,k} \leq z_{t,k} \leq Z^\text{max} r_{t,k} \quad \forall t, \forall k,
\]

where for each time slot \(t \) and random scenario \(k \), we have

\[
z_{t,k} = q_{t,k} + y_{t,k} \quad \tag{44}
\]

and \(r_{t,k} \) is a new binary variable to indicate whether the load is switched ‘on’ or ‘off’ at time slot \(t \) and under scenario \(k \). This new variable will be useful also later in Section IV-C.

B. Ramp Constraints

The ramp up and ramp down constraints do not allow the time-shiftable load to change its consumption level faster than certain rates within two consecutive time slots:

\[
z_{t,k} - z_{t-1,k} \leq U^\text{max} \quad \forall t \geq 2, \forall k \quad \tag{45a}
\]

\[
z_{t-1,k} - z_{t,k} \leq D^\text{max} \quad \forall t \geq 2, \forall k \quad \tag{45b}
\]

where \(U^\text{max} \) and \(D^\text{max} \) denote the maximum ramp up and maximum ramp down rates, respectively. Note that, the constraints in (45) address one type of inter-temporal dependency in time-shiftable loads. Another type is discussed next.

C. Uninterruptible Loads

If a time-shiftable load is uninterruptible, then as soon as it switches ‘on’ to start operation, it must continue its operation until it finishes its intended task. Based on the notations that we defined in Section IV-A, the following constraints must hold for an uninterruptible time-shiftable load:

\[
r_{t,k} \leq r_{t+1,k} + \frac{1}{e} \sum_{\tau=1}^{t} z_{\tau,k} \quad \forall t \leq T - 1, \forall k. \quad \tag{46}
\]

From (46), at time slot \(t \) and under scenario \(k \), we can choose \(r_{t,k} = 1 \) only if either \(r_{t+1,k} = 1 \), i.e., the operation of the load continues in the next time slot, or \(\sum_{\tau=1}^{t} z_{\tau,k} = e \), i.e., the operation of the load finishes by the end of the current time slot [9]. Note that, the constraints in (46) address yet another type of inter-temporal dependency in time-shiftable loads.

D. Aggregated Small Sub-Loads

In some cases, a time-shiftable load may consist of several smaller time-shiftable subloads or subtasks [22]. In that case, besides selecting the day-ahead and real-time market bids, we must also optimally schedule the operation of all subloads. Let \(S \geq 1 \) denote the number of time-shiftable subloads. For each subload \(s = 1, \ldots, S \), let \(\alpha_s \) and \(\beta_s \) denote the beginning and the end of the time interval at which the subload can be scheduled. Also let \(e_s \) denote the total energy that must be consumed in order to finish the operation of subload \(s \). We can incorporate the problem of scheduling subloads by adding the following constraints into the problem formulation:

\[
\sum_{s=1}^{S} z_{t,k,s} = z_{t,k} \quad \forall t, \forall k, \quad \tag{47}
\]

\[
\beta_{t,k} = e_t \quad \forall s, \forall k. \quad \tag{48}
\]

Note that, if there is only one subload, i.e., \(S = 1 \), then (47) reduces to (44); and (48) reduces to the first constraint in (42).

V. CASE STUDIES

A. Case Study 1: A Detailed Illustrative Example

In this section, we present a detailed illustrative example. Suppose we would like to procure energy for a time-shiftable load with start time \(\alpha = 1 \), deadline \(\beta = T = 3 \), and total energy consumption \(e = 75 \text{ MWh} \). The uncertainty in the electricity market is modeled using \(K = 2 \) scenarios.

1) Basic Time-Shiftable Loads: First, consider the most generic time-shiftable load model in Section II-D. The price quota curves for the day-ahead and the real-time markets and the corresponding optimal bids are shown in Fig. 3. These optimal solutions are first obtained by solving the mixed-integer linear program in (42) and then the results are verified using exhaustive search. Using a computer with a 2.40 GHz CPU and 80 GB shared RAM, the mixed-integer linear program in (42) was solved in less than 1 second. However, it took multiple days for the exhaustive search with several for loops to finish the search and give the exact same solution.

From Fig. 3, we can see that the bidding outcome and the schedule of the time-shiftable load across time slots highly depends on the realization of the market scenario. For example, if scenario \(k = 1 \) occurs, then the power consumption at time slot \(t = 1 \) becomes 47 MW, out of which 20 MW is procured from the day-ahead market at 24 $/MW and 27 MW is procured from the real-time market at 29 $/MW. In this scenario, because the prices are high at time slot \(t = 2 \), no energy usage is scheduled at this time slot. Finally, the power consumption at time slot \(t = 3 \) and scenario \(k = 1 \) is 75 - 47 = 28 MW, out of which 10 MW is procured from the day-ahead market at 23 $/MW and 18 MWh is procured from the real-time market at 25 $/MW. The total cost of power purchase from the day-ahead market in this scenario is \(C_{1,1} + C_{2,1} + C_{3,1} = 20 \times 24 + 0 \times 0 + 10 \times 23 = 710 \). Also, the total cost of power procurement from the real-time market is obtained as \(27 \times 29 + 0 \times 0 + 18 \times 25 = 1,233 \).
use the price-maker Self-Schedule bidding in [30], then the total expected cost of power procurement becomes $1,904, i.e., $34 higher than our proposed price-maker economic bidding method. Also, if we do even load distribution, i.e., we distribute the total load \(e = 75 \text{ MWh} \) equally across the \(\beta - \alpha + 1 = 3 \) time-slots and also equally across the day-ahead and real-time markets, then the total expected cost of power procurement becomes $2,169, i.e., $299 higher than our proposed price-maker economic bidding method.

2) Time-Shiftable Loads with Consumption Limits: Next, we consider the basic time-shiftable load model, but we also assume that there exist per-time-slot consumption limits as in Section IV-A. The results are shown in Fig. 4(a), where \(Z_{\text{min}} = 0 \text{ MWh} \) and \(Z_{\text{max}} \) varies from 25 to 50 MWh. We can see that the optimal energy procurement cost is high if the operation of the time-shiftable load is highly restricted due to the per-time-slot power consumption constraints. However, as we increase \(Z_{\text{max}} \), the cost reduces and finally reaches its original level as in Section V-A-1, where \(Z_{\text{max}} \) is not binding.

3) Time-Shiftable Loads with Ramp Constraints: Again, consider the basic time-shiftable load model, but this time assume that there exist ramp constraints as in Section IV-B. The results are shown in Fig. 4(b), where \(U_{\text{max}} = D_{\text{max}} \) vary from 0 to 30 MWh. Note that, if \(U_{\text{max}} = D_{\text{max}} = 0 \), then the load does not tolerate any inter-temporal variation. We can see that ramp constraints can significantly increase the energy procurement cost. However, as we increase \(U_{\text{max}} \) and \(D_{\text{max}} \), the cost reduces and finally reaches its original level as in Section V-A-1, where the ramp constraints are not binding.

4) Uninterruptible Time-Shiftable Loads: Recall from Section IV-C that if a time-shiftable load is uninterruptible, then it is still flexible with respect to its operation start time; however, once it starts operation, it cannot be interrupted until it finishes its task. Here, interruption is defined as selecting \(z_{t,k} < Z_{\text{min}} \), which requires choosing \(r_{t,k} = 0 \), i.e., switching the load off. The optimal bids when the time-shiftable load is uninterruptible is shown in Fig. 5, where \(Z_{\text{min}} = 15 \). We can see that, the time-shiftable load procures energy from all three time slots, including the second time slot which...
has high prices. This is because, unlike in Fig. 3, here, the operation cannot be interrupted during the second time slot and then resumed during the third time slot. Note that, since an uninterruptible time-shiftable load is less flexible than a basic time-shiftable load, it pays 145$ more for its energy procurement compared to the case in Section V-A-1.

5) Aggregated Time-shiftable Subloads: To study the impact of time-shiftable subloads on the choice of demand bids, the total load \(e = 75 \) MWh is now divided into three sub-loads as follow: 1) \(e_1 = 10, \alpha_1 = 1, \beta_1 = 3, 2) e_2 = 20, \alpha_2 = 1, \beta_2 = 2, \) and 3) \(e_3 = 45, \alpha_3 = 2, \beta_3 = 3. \) Fig. 6 shows the procured energy for different loads at scenarios \(k = 1 \) and \(k = 2. \) We can see that the different start and end-times for sub-loads affects the amount of total energy that needs to be procured under each scenario and at each time slot.

B. Case Study 2: California Energy Market

In this section, we present some additional case studies, this time based on the California energy market. To create the price quota curves, we used the hourly generator bids data from the public bids database in [35] at one dollar price bid resolution. The day-ahead and real-time prices are also obtained from the prices database in [35], where we averaged real-time market prices in each hour to make them comparable with the hourly price data from the day-ahead market. Finally, since the focus in this paper is on pool-based markets, the grid topology and transmission constraints are not considered in our simulations.

In total, we examined 10 cases. Each case has a time shiftable load with \(E = 10 \) GWh and \(K = 3 \) market scenarios. For Case 1, the three scenarios are based on the price and bid data during January 1, 2014 to January 3, 2014. For Case 2, the three scenarios are based on the price and bid data during January 4, 2014 to January 6, 2014. The rest of the cases are setup similarly, all together using data for 30 days. For each case, three design options are compared: 1) Optimal price-maker self-schedule bidding, which is an extension of the design in [30] to both day-ahead and real-time markets; 2) Optimal price-maker economic bidding, which is based on the design in this paper; and 3) Even load distribution, which distributes the load equally across time-slots and markets.

The amount of savings due to using optimal price-maker economic bidding over optimal price-maker self-schedule bidding across the 10 cases are shown in Figs. 7(a) and (b), during some off-peak hours from \(\alpha = 10:00 \text{ AM} \) to \(\beta = 12:00 \text{ PM} \) and also during some on-peak hours from \(\alpha = 15:00 \text{ PM} \) to...
We formulated and efficiently solved a new scenario-based stochastic mixed-integer linear programming framework for price-maker economic bidding of time-shiftable loads with one would expect, increasing the number of random scenarios results in increasing the number of optimization variables, i.e., increasing the size of the optimization problem. Accordingly, the computation time increases. When it comes to solving mixed-integer linear programs, the computation time particularly depends on the number of binary variables, because it indicates the maximum branching steps needed when we use a branch and bound algorithm [43]. From Table 1, despite the increased computational complexity, one can still use the proposed method in this paper under larger sets of random scenarios. If needed, one can lower the price resolution at price quota curve, e.g., by setting resolution to $2 instead of $1, so as to decrease the number of steps in the price quota curve in order to further lower the computation time.

VI. Conclusions

We formulated and efficiently solved a new scenario-based stochastic mixed-integer linear programming framework for price-maker economic bidding of time-shiftable loads with
deadlines in day-ahead and real-time markets. On the application side, the results in this paper extended some recent results in price-taker operation of time-shiftable loads in wholesale electricity markets. Both basic and complex time-shiftable load types are addressed, where the latter includes time-shiftable loads that are uninterruptible, have per-time-slot consumption limits or ramp constraints, or comprise several smaller time-shiftable subloads. On the methodology side, the results in this paper also extended the existing results on price-maker self-scheduling of both loads and generators, because price-maker self-scheduling is a restricted special case of price-maker economic bidding. To investigate the performance of our design, a highly detailed illustrative case study along with multiple case studies based on the California energy market data are presented. We showed that the proposed optimal price-maker economic bidding approach outperforms both optimal price-maker self-scheduling and even-load-distribution.

REFERENCES

Mahdi Kohansal (S’14) received his M.Sc. degree in electrical engineering from Amirkabir University of Technology, Tehran, Iran in 2013. He is now pursuing a Ph.D. degree at the University of California at Riverside. His Research interests include the application of mathematical optimization in power systems, electricity markets, and smart power grids.

Hamed Mohsenian-Rad (S’04-M’09-SM’14) received a Ph.D. degree in Electrical and Computer Engineering from the University of British Columbia in Vancouver, Canada in 2008. Currently, he is an Assistant Professor of Electrical Engineering at the University of California at Riverside. Dr. Mohsenian-Rad is the recipient of the National Science Foundation (NSF) CAREER Award 2012, the Best Paper Award from the IEEE Power and Energy Society General Meeting 2013, and the Best Paper Award from the IEEE International Conference on Smart Grid Communications 2012. He serves as Editor for the IEEE Trans. on Smart Grid, the IEEE Communications Surveys and Tutorials, and the IEEE Communications Letters. His research interests are the design, optimization, and game-theoretic analysis of power systems and electricity markets.