University of California, Riverside

Department of Electrical and Computer Engineering



Somaia Sylvia: Nanowire Tunnel Field Effect Transistors: Prospects and Pitfalls


Somaia Sylvia: Nanowire Tunnel Field Effect Transistors: Prospects and Pitfalls
 
EE

Somaia Sylvia: Nanowire Tunnel Field Effect Transistors: Prospects and Pitfalls

March 13, 2014 - 1:00 pm
Bourns A277

Abstract: The tunnel field effect transistor (TFET) has the potential to operate at lower voltages and lower power than the field effect transistor (FET). The TFET can circumvent the fundamental thermal limit of the inverse subthreshold slope (S) by exploiting interband tunneling of non-equilibrium “cold” carriers. The conduction mechanism in the TFET is governed by band-to-band tunneling which limits the drive current. TFETs built with III-V materials like InAs and InSb can produce enough tunneling current because of their small direct bandgap. Our simulation results show that although they require highly degenerate source doping to support the high electric fields in the tunnel region, the devices achieve minimum inverse subthreshold slopes of 30 mV/dec. In subthreshold, these devices experience both regimes of voltage-controlled tunneling and cold-carrier injection. Numerical results based on a discretized 8-band k.p model are compared to analytical WKB theory.

For both regular FETs and TFETs, direct channel tunneling dominates the leakage current when the physical gate length is reduced to 5 nm. Therefore, a survey of materials is performed to determine their ability to suppress the direct tunnel current through a 5 nm barrier. The tunneling effective mass gives the best indication of the relative size of the tunnel currents. Si gives the lowest overall tunnel current for both the conduction and valence band and, therefore, it is the optimum choice for suppressing tunnel current at the 5 nm scale.

 Our numerical simulation shows that the finite number, random placement, and discrete nature of the dopants in the source of an InAs nanowire (NW) TFET affect both the mean value and the variance of the drive current and the inverse subthreshold slope. The discrete doping model gives an average drive current and an inverse subthreshold slope that are less than those predicted from the homogeneous doping model. The doping density required to achieve a target drive current is higher in the discrete doping model compared to the homogeneous doping model. The relative variation in the ON current decreases as the average doping density and/or NW diameter increases. For the largest 8 nm NW studied, the coefficient of variation in the ON current is 15% at a doping density of 1.5 × 1020 cm−3. Results from full self-consistent non-equilibrium Green’s function calculations and semi-classical calculations are compared.

More in Defenses

More Information 

General Campus Information

University of California, Riverside
900 University Ave.
Riverside, CA 92521
Tel: (951) 827-1012

Department Information

Electrical and Computer Engineering
Suite 343 Winston Chung Hall
University of California, Riverside
Riverside, CA 92521-0429

Tel: (951) 827-2484
Fax: (951) 827-2425
E-mail: E-mail/Questions

Footer