I. MAJOR AREA COURSES -- CURRENT

This section presents the list of courses in each of the five areas. Recall that M.S. Plan II students must choose a major area and two minor areas, and answer three questions from their major area, and one question from each of the two minor areas (these could be either basic or advanced courses). Ph.D. students will answer five questions from one major area only, but answer three questions from the basic courses and two from the advanced courses in the chosen major area.

Please refer to the UCR General Catalog (http://www.catalog.ucr.edu/) for descriptions of the courses.

Nano-materials, devices, and circuits

BASIC COURSES

- EE 201 Applied Quantum Mechanics
- EE 202 Fundamentals of Semiconductors and Nanostructures
- EE 203 Solid State Devices
- EE 205 Optoelectronics and Photonic Devices
- EE 206 Nanoscale Characterization Techniques
- EE 215 Stochastic Processes

ADVANCED COURSES

- EE 204 Advanced Electromagnetics
- EE 207 Noise in Electronic Devices
- EE 208 Semiconductor Electron, Phonon, and Optical Properties
- EE 209 Semiclassical Electron Transport
- EE 212 Quantum Electron Transport
- EE 214 Quantum Computing
- EE 216 Nanoscale Phonon Engineering
- EE 219 Advanced CMOS Technology
- EE 220 Applied Ferromagnetism
- EE 223 Numerical Analysis of Electromagnetic Devices
- EE 230 Mathematical Methods for Electrical Engineering

PHYS 221A,B Quantum Mechanics

PHYS 234 Physics of Nanoscale Systems

PHYS 235 Spintronics and Nanoscale Magnetism

PHYS 240A,B,C Condensed Matter Physics

PHYS 242 Physics at Surfaces and Interfaces

CHEM 202 Advanced Instrument Design

CHEM 203 Nanoscience and Nanotechnology

ME 272 Nanoscale Science and Engineering

BIEN 245 Optical Methods in Biology, Chemistry, and Engineering

MSE 210 Crystall Structure and Bonding

MSE 220 Materials Characterization Techniques
Control and Robotics

BASIC COURSES
- EE 215 Stochastic Processes
- EE 230 Mathematical Methods for Electrical Engineering
- EE 235 Linear System Theory
- EE 236 State and Parameter Estimation Theory

ADVANCED COURSES
- EE 210 Advanced Digital Signal Processing
- EE 211 Adaptive Signal Processing
- EE 231 Convex Optimization in Engineering Applications
- EE 232 Introduction to Smart Grid
- EE 237 Nonlinear Systems and Control
- EE 238 Linear Multivariable Control
- EE 239 Optimal Control
- EE 240 Pattern Recognition
- EE 241 Advanced Digital Image Processing
- EE 242 Intelligent Systems
- EE 243 Advanced Computer Vision
- EE 244 Computational Learning
- EE 245 Advanced Robotics
- EE 246 Intelligent Transportation Systems

Intelligent Systems

BASIC COURSES
- EE 215 Stochastic Processes
- EE 230 Mathematical Methods for Electrical Engineering
- EE 235 Linear System Theory
- EE 236 State and Parameter Estimation Theory
- EE 240 Pattern Recognition
- EE 242 Intelligent Systems

ADVANCED COURSES
- EE 210 Advanced Digital Signal Processing
- EE 211 Adaptive Signal Processing
- EE 218 Power System Steady-state and Market Analysis
- EE 229 Video Processing and Communication
- EE 231 Convex Optimization in Engineering Applications
- EE 232 Introduction to Smart Grid
- EE 239 Optimal Control
- EE 241 Advanced Digital Image Processing
- EE 243 Advanced Computer Vision
- EE 244 Computational Learning
- EE 245 Advanced Robotics
- EE 246 Intelligent Transportation Systems
DRAFT – COURSES AND RESEARCH TOPICS TBD BY AREA FACULTY

EE 247 Current Topics in Computer Vision and Pattern Recognition
EE 249 Power System Dynamics
EE 250 Information Theory
EE 258 Modeling and Synthesis of Cyber-Physical Systems
CS 218 Design and Analysis of Algorithms

Communications and Signal Processing

BASIC COURSES

EE 210 Advanced Digital Signal Processing
EE 215 Stochastic Processes
EE 224 Digital Communication Theory and Systems
EE 230 Mathematical Methods for Electrical Engineering
EE 235 Linear System Theory
EE 236 State and Parameter Estimation Theory

ADVANCED COURSES

EE 211 Adaptive Signal Processing
EE 225 Error-Correcting Codes
EE 226 Wireless Communications
EE 227 Spread Spectrum Communications
EE 228 Fundamentals of Data Compression
EE 229 Video Processing and Communication
EE 231 Convex Optimization in Engineering Applications
EE 240 Pattern Recognition
EE 241 Advanced Digital Image Processing
EE 250 Information Theory
EE 251 Algorithmic and Combinatorial Coding Theory

Integrated Circuits and VLSI System Design

BASIC COURSES

EE 203 Solid State Devices
EE 213 Computer-Aided Electronic Circuit Simulation
EE 221 Radio-Frequency Integrated Circuit Design
EE 235 Linear System Theory
CS 203A Advanced Computer Architecture
CS 218 Design and Analysis of Algorithms

ADVANCED COURSES

EE 201 Applied Quantum Mechanics
EE 202 Fundamentals of Semiconductors and Nanostructures
EE 215 Stochastic Processes
EE 217 GPU Architecture and Parallel Programming
EE 219 Advanced CMOS Technology
EE 222 Advanced Radio-Frequency Integrated Circuit Design
EE 230 Mathematical Methods for Electrical Engineering
EE 248 Computer-Aided Logic Synthesis for Digital Systems
EE 258 Modeling and Synthesis of Cyber-Physical Systems
CS 203B Advanced Computer Architecture
CS 213 Parallel Processing Architectures
CS 220 Synthesis of Digital Systems
CS 223 Reconfigurable Computing
CS 269 Software and Hardware Engineering of Embedded System
MAJOR AREA COURSES -- PROPOSED

This section lists the courses that may be taken by students in their Preliminary/Comprehensive exams in each of the Department’s three major areas. Recall that each student must choose 5 courses (three basic and two advanced) for his/her exam.

Please refer to the UCR General Catalog (http://www.catalog.ucr.edu/) for descriptions of the courses.

MAJOR AREA: Nano-materials and Devices

This major area encompasses research subjects such as nanostructures and nanodevices, electronic materials, XX, XX, XX. Students in this area may choose from the following courses for their Preliminary/Comprehensive Exams:

BASIC COURSES

- EE 201 Applied Quantum Mechanics
- EE 202 Fundamentals of Semiconductors and Nanostructures
- EE 203 Solid State Devices
- EE 205 Optoelectronics and Photonic Devices
- EE 206 Nanoscale Characterization Techniques
- EE 215 Stochastic Processes

ADVANCED COURSES

- EE 204 Advanced Electromagnetics
- EE 207 Noise in Electronic Devices
- EE 208 Semiconductor Electron, Phonon, and Optical Properties
- EE 209 Semiclassical Electron Transport
- EE 212 Quantum Electron Transport
- EE 214 Quantum Computing
- EE 216 Nanoscale Phonon Engineering
- EE 219 Advanced CMOS Technology
- EE 220 Applied Ferromagnetism
- EE 223 Numerical Analysis of Electromagnetic Devices
- EE 230 Mathematical Methods for Electrical Engineering
- PHYS 221A,B Quantum Mechanics
- PHYS 234 Physics of Nanoscale Systems
- PHYS 235 Spintronics and Nanoscale Magnetism
- PHYS 240A,B,C Condensed Matter Physics
- PHYS 242 Physics at Surfaces and Interfaces
- CHEM 202 Advanced Instrument Design
- CHEM 203 Nanoscience and Nanotechnology
- ME 272 Nanoscale Science and Engineering
- BIEN 245 Optical Methods in Biology, Chemistry, and Engineering
- MSE 210 Crystall Structure and Bonding
- MSE 220 Materials Characterization Techniques
MAJOR AREA: Systems Theory and Applications

This major area encompasses research subjects such as Control, Robotics, Communications, Signal Processing, Energy and Power Systems, Computer Vision, Machine Learning, Information Theory, Image Processing, Navigation, and Transportation Systems.

BASIC COURSES

EE 210 Advanced Digital Signal Processing
EE 215 Stochastic Processes
EE 224 Digital Communication Theory and Systems
EE 230 Mathematical Methods for Electrical Engineering
EE 235 Linear System Theory
EE 236 State and Parameter Estimation Theory
EE 240 Pattern Recognition

ADVANCED COURSES

EE 211 Adaptive Signal Processing
EE 218 Power System Steady-state and Market Analysis
EE 225 Error-Correcting Codes
EE 226 Wireless Communications
EE 227 Spread Spectrum Communications
EE 228 Fundamentals of Data Compression
EE 229 Video Processing and Communication
EE 231 Convex Optimization in Engineering Applications
EE 232 Introduction to Smart Grid
EE 237 Nonlinear Systems and Control
EE 238 Linear Multivariable Control
EE 239 Optimal Control
EE 241 Advanced Digital Image Processing
EE 243 Advanced Computer Vision
EE 244 Computational Learning
EE 245 Advanced Robotics
EE 246 Intelligent Transportation Systems
EE 247 Current Topics in Computer Vision and Pattern Recognition
EE 249 Power System Dynamics
EE 250 Information Theory
EE 251 Algorithmic and Combinatorial Coding Theory
EE 258 Modeling and Synthesis of Cyber-Physical Systems
CS 218 Design and Analysis of Algorithms
MAJOR AREA: Computer Engineering

This major area encompasses research subjects such as Integrated Circuit and VLSI System Design, Computer Architecture, Computer-Aided Design, Cyber-Physical and Embedded Systems

BASIC COURSES

- EE 203 Solid State Devices
- EE 213 Computer-Aided Electronic Circuit Simulation
- EE 221 Radio-Frequency Integrated Circuit Design
- EE 235 Linear System Theory
- CS 203A Advanced Computer Architecture
- CS 218 Design and Analysis of Algorithms

ADVANCED COURSES

- EE 201 Applied Quantum Mechanics
- EE 202 Fundamentals of Semiconductors and Nanostructures
- EE 215 Stochastic Processes
- EE 217 GPU Architecture and Parallel Programming
- EE 219 Advanced CMOS Technology
- EE 222 Advanced Radio-Frequency Integrated Circuit Design
- EE 230 Mathematical Methods for Electrical Engineering
- EE 248 Computer-Aided Logic Synthesis for Digital Systems
- EE 258 Modeling and Synthesis of Cyber-Physical Systems
- CS 203B Advanced Computer Architecture
- CS 213 Parallel Processing Architectures
- CS 220 Synthesis of Digital Systems
- CS 223 Reconfigurable Computing
- CS 269 Software and Hardware Engineering of Embedded System