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ABSTRACT 

Si nanowires are direct gap with considerably heavier 
effective masses in both the conduction band and valence 
band compared to the bulk. Confinement leads to 
particularly rich structure in the valence band transmission 
versus energy functions. The single band model performs 
surprisingly well at calculating the effective band edges for 
the 1.54 nm wire. However, the accuracy of the single band 
calculation quickly becomes non-existent away from the 
band edge. The nanowire-bulk interface is an effective 
heterojunction with a band edge discontinuity 
corresponding to the confinement energies in the nanowire. 
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1 INTRODUCTION 

The scaling and miniaturization of CMOS has continued 
unabated, overcoming perceived technical obstacles ahead 
of schedule. It now appears that tunneling, the finite, 
countable number of electrons, and the random statistical 
fluctuations of dopants and alloys determine the ultimate 
limits of this trend. Modeling software should be developed 
now that can address the physics associated with Si-based 
device sizes at the ultimate quantum limit and to investigate 
nano-device concepts beyond traditional CMOS. Our 
objective is to develop a three-dimensional (3D), atomistic, 
full-band, full-quantum device simulator that can model 
electron and hole transport through strained, nano-scale Si-
based structures. At this level, there is a natural merging of 
device and material simulations. The immediate ‘device 
under test’ is the ‘self-assembled’ Si / SiGe nanopillar. It 
consists of a core of SiGe within an oxidized Si nanowire. 
The oxidation process is self-limited at a certain radius of 
curvature [1], and the Ge is pushed ahead of the oxide front 
creating a Ge rich core [2]. Conversely one could envision 
starting with a relaxed SiGe virtual substrate resulting in 
SiGe leads with a highly strained Si quantum dot. To 
address the issues of electronic modeling and design of 
such structures, we have developed two different 
approaches both within the non-equilibrium Green function 
framework. This framework is described for a 1D planar 
system in [3]. The first approach is based on a three-
dimensional (3D) discretization of the single-band effective 

mass equation. The second is based on the full-band sp3s*d5 
localized orbital model [4]. 

As a starting point, we have considered two types of 
structures, ideal, infinite Si wires passivated with H, and 
semi-infinite wires sitting on a planar Si substrate also 
passivated with H. Plan views and elevations of the wires 
are shown in Fig. 1. On the left is shown a H passivated Si 
ideal wire which in plan view is seen to be a 9x9 array of Si 
atoms with edges along the (110) and )101( directions. The 
red atoms are Si and the blue atoms are H. For the infinite 
wires, we calculate both transmission and the E-k 
dispersion relations to determine effect of confinement on 
the position of the valley maximums and minimums and 

Fig. 1. Two types of Si wires considered. Left: ideal 1.54 
nm x 1.54 nm Si wire. Right: 1.15 nm diameter Si wire 
on planar Si substrate. Si atoms in red and H atoms in 
blue. 
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their corresponding effective masses. The infinite wires as 
shown on the left are identical to the ones considered in [5] 
and our sp3s*d results quantitatively compare with theirs.  
We have also simulated wires standing on  planar substrates 
as shown on the right of Fig. 1, and we compare 
transmission calculations of the wire on substrate versus 
those for the ideal wire. 

2 BAND GAPS AND EFFECTIVE MASSES 

The E-k diagrams of the conduction and valence bands 
for a 1.54nm square wire (9x9 Si atoms) and a 2.3 nm 
square wire (13x13 Si atoms) are shown in Figs. 2 and 3.  
They are calculated using the sp3s*d5 model including spin-
orbit coupling with matrix elements optimized using a 

genetic algorithm to give the correct T=300K bulk Si 
bandgaps and masses [6]. The unit cell of the 9x9 wire is 
shown in Fig. 4. The energy axis is such that 0 eV 
corresponds to the valence band edge of bulk Si.  

The bandgaps of the 2.3nm and 1.54 nm Si wires are 
1.76 and 2.1 eV, respectively, as compared to 1.12 eV of 
bulk Si. The band minimum in the conduction band is now 
at k=0 resulting from confinement of the 4 equivalent ∆ 
valleys shown at the bottom right of the conduction band E-
k plots.  The conduction band masses of 0.31 for the 2.3 nm 
wire and 0.78 for the 1.54 nm wire are considerably heavier 
than the bulk transverse mass of 0.19 which is the mass 
along  the wire axis in the ∆4 valleys.  The changes in the 
valence bands are just as large. For both wires, the mass of 

∆2 

∆4 

Fig. 2. E-k plots of conduction and valence band for 
2.3nm square Si wire. 
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Fig. 3.  E-k plots of conduction and valence band for 
1.54 nm square Si wire. 
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the highest valence band is 1.6, which is 3.3 times heavier 
than the heavy hole mass of 0.49 for bulk Si.  For  the 2.3 
nm wire, 4 bands lie within less than 2 kBt of the of the 
valence band edge with the second highest band almost flat 
with an effective mass of 8.1.  The lightest mass of 0.31,  
which is 1.9 times the bulk light hole mass of 0.16, occurs 
for the third band 20 meV below the valence band edge.  

 

3 COMPARISON WITH SINGLE BAND 

One of our goals is to develop modeling capability 
suitable for device design of these nanoscale Si structures. 
A design tool requires fast modeling capability, which leads 
us to evaluate a discretized single band effective mass 
model for these structures. In the single band model we 
perform a calculation for each unique valley independently 
and then multiply the result by the valley degeneracy and a 
factor of 2 for spin. A comparison  of the transmission 
coefficient calculated from the single band model and the 
full-band sp3s*d5 model for the 1.54 nm wire is shown in 
Fig. 5.  The transmission coefficient initially jumps up to a 
factor of 8 at the conduction band edge that is formed by 
the 4 equivalent ∆4 valleys each with 2 spin channels. What 

is most interesting is that even for this extremely confined 
quantum wire,  the conduction band edge predicted by the 
single band model is off by 50 meV which is only 9% of 
the total confinement energy predicted by the full band 
model of 0.58 eV. Of course the results quickly diverge at 
higher energies. The single band prediction of the ∆2 edge 
is completely off.  The second turn on in the full-band 
calculation is the result of the ∆2 edge which gives rise to 
the step height of 4, 2 valleys times 2 spins.  The single 
band calculation is off by 260 meV.   

The valence band comparison shown in Fig. 6 cannot be 
made on the same plot.  However, again, the difference in 
the predicted energy of the first turn-on, i.e. the effective 
band edge, is only 50 meV. Thus, if one is only interested 

Fig. 4. Unit cell of the 1.54 nm wire. 

Fig. 5. Comparison of full-band and single band 
calculations of transmission coefficient through the 
1.54 nm wire conduction bands. 

Fig. 6. Comparison of (a)  full band and (b) single band 
calculated transmission coefficients through the 1.54 
nm wire valence band.  
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in the effective band edges resulting from confinement, a 
single band model is only off by approximately 10% even 
for these extremely quantized structures.  But the results in 
the valence band diverge much more quickly, and the entire 
full band plot lies within the arrows on the single band plot. 
One interesting feature of the full band plot is the quick 
turn-on at –0.43 eV followed by a turn-off at –0.434 of a 
double channel. This results from the energy being scanned 
down through the second valence band of Fig. 3. Such a 
result could never result from a single band type 
calculation.  

4 WIRE ON SUBSTRATE 

So far, we have considered ideal infinite Si wires. 
However, actual wires stand on bulk planar substrates from 
which electrons are injected. Therefore, we have developed 
the capability to model  Si wires with bulk planar contacts. 
The required 2D surface Green function is obtained by 
Fourier transforming the 1D planar orbital surface Green 
function described in [3] over the 2D Brillouin zone. The 
actual wire that we simulate is shown in Fig. 1 on the right.  
Fig. 7 shows a comparison of the calculated transmission 
coefficients for an ideal wire and a wire on a substrate. The 
difference can be understood if one considers the difference 
in the band edges of the wire and bulk. One effectively has 
a heterojunction at the wire – bulk interface and is then 
looking at injection over a barrier of 1 eV. Thus, reflection 
occurs in the bulk-wire system reducing the ideal plateaus 
in the transmission. 

5 CONCLUSION  

In conclusion, we have developed both continuum 
single-band and atomistic full-band 3D non-equilibrium 
Green function codes for modeling and design of Si  / SiGe 
nanowires. The Si nanowires are direct gap with 
considerably heavier effective masses in both the 
conduction band and valence band compared to the bulk. 
Confinement leads to particularly rich structure in the 
valence band transmission versus energy functions. The 
single band model performs surprisingly well at calculating 
the effective band edges for the 1.54 nm wire. However, the 
accuracy of the single band calculation quickly becomes 
non-existent as one moves away from the band edge. The 
nanowire-bulk interface is an effective heterojunction with 
a band edge discontinuity corresponding to the confinement 
energies in the nanowire. This results in reflection and 
reduction of the transmission from the  ideal plateaus. 
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Fig. 7. Comparison of transmission through the wire 
shown on the right in Fig. 1 with injection from the 
substrate versus an ideal wire. 
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