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Digital Integrated Circuit (IC) Layout and Digital Integrated Circuit (IC) Layout and 
Design Design -- Week 3, Lecture 5Week 3, Lecture 5

! http://www.ee.ucr.edu/~rlake/EE134.html
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Reading and Reading and PrelabPrelab

" Week 1 - Read Chapter 1 of text.
" Week 2 - Read Chapter 2 of text.
" Week 3 - Read Chapter 3 of text.
" Prelab - Lab 1.

! Read insert A of text, pp. 67 - 71.
! The lab will make more sense if you read this 

before lab.
! There is nothing to turn in.
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AgendaAgenda
" Last Lecture

! Design rules
! Layout and Design
! Ties to VDD and GND
! Padframes
! Pin Packages

" Today�s Lecture
! Contacts
! Basic MOS transistor operation
! Large-signal MOS model for manual analysis
! The CMOS inverter
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Course Emphasis / Design StylesCourse Emphasis / Design Styles
" Physical design of CMOS digital ICs
" Application Specific IC (ASIC)

! Full Custom (What we are doing)
– Most flexible approach
– Higher speed
– Smaller designs
– Expensive
– Requires device-level (i.e. transistor level) knowledge
– Push limits of a technology - must understand 

parasitics: stray C, L, pn jns., BJTs, breakdown, 
stored charge, latch-up, etc.

– Used for high-volume chips - µ−processors & 
memory
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Design Styles (cont.)Design Styles (cont.)
" ASIC (cont.)

! Standard Cell
– Logic gate level
– Low volume
– Quick turnaround
– Lower density

! Gate Array (FPGA)
– Lowest density - speed - cost.
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FlowchartFlowchartDefine circuit specs

Circuit Schematic

Circuit Simulation

Layout

Parasitic Extraction (R,C)

Re-simulate with Parasitics

Prototype Fabrication

Test and Evaluate

Production

Meet Specs?

Meet Specs?

Meet Specs?

No

No

YesNo
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Tie nTie n--well to VDD and Substrate to well to VDD and Substrate to 
GroundGround

A A’

n
p-substrate Field

Oxidep+n+

In

Out

GND VDD

(a) Layout

A A’

VDD

n+

V

n+p+
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Reason for GND and VReason for GND and VDDDD TiesTies

n
p-substrate

p+n+

VDD

n+

Vout

n+p+

p-substrate

Parasitic Diodes
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Contacts to SiliconContacts to Silicon

" Ohmic Contacts
! Metal on highly doped n+ or p+ Si.
! What you want to pin the substrate to ground or 

the n-well to VDD.

" Schottky Contacts (we won�t use these)
! Metal on lightly doped n or p Si.
! Creates a Schottky diode which has an I-V curve 

similar to a p-n junction diode.
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OhmicOhmic contactcontact
" Metal on n+ or p+ Si.
" Simple picture:

" Need heavy doping to get the ultra short 
screening length needed for an OHMIC 
contact.
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SchottkySchottky ContactContact
" Metal on n or p Si.
" Simple picture:

" Light n or p doping gives long screening 
length giving Schottky Barrier.
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OhmicOhmic Contacts for Voltage PinningContacts for Voltage Pinning

" Ohmic contact to the n-well
" You need the

! Active and Select to 
define  the n+ 
region.

! Contact to put hole 
in thick passivation
oxide / nitride so 
that the metal 
contacts the Si.
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OhmicOhmic Contacts for Voltage PinningContacts for Voltage Pinning

" Ohmic contact to the p-substrate
" You need the

! Active and Select to define  
the p+ region.

! Contact to put hole in 
thick passivation oxide / 
nitride so that the metal 
contacts the Si.
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Pin nPin n--well to Vwell to VDDDD and pand p--substrate to GNDsubstrate to GND

M1

VDD

M1

GND

Power
Bus

Ground
Bus

PMOS

NMOS

p+

p+

n+

n-well

n+

n+

p+
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The Active LayerThe Active Layer
" Cut in the Field Oxide (FOX) to get down to 

the Si.
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Active and Select LayersActive and Select Layers
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Active and Select Layers (cont)Active and Select Layers (cont)
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4 Concepts to Remember:4 Concepts to Remember:
" Need to put down an n+ region on the n-well 

to make an ohmic contact to the n-well.

" Need to put down a p+ region on the p-
substrate to make an ohmic contact to the 
p-substrate.

" These are your active / select layers.

" Finally, you need a contact layer to drill 
through the thick oxide / nitride passivation.
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BAD MOS LayoutBAD MOS Layout
" DO NOT DO THIS!!!!!!!

active - hole cut in FOX

n+ select

• Self-aligned process
• The Poly gate serves as an implant mask during the n+ 

implant. 
• There is no gap between the source/gate and drain/gate.

poly-gate
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OutlineOutline

" MOS Transistor
! Basic Operation
! Modes of Operation
! Deep sub-micron MOS

" CMOS Inverter

Ch. 3
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What is a Transistor?What is a Transistor?

VGS ≥ VT

Ron
S D

A Switch!An MOS Transistor

DS

GVGS

EE134 22

Switch Model of CMOS TransistorSwitch Model of CMOS Transistor

DS

GVGS

S
Ron

D S D
|VGS| < |VT| |VGS| > |VT|
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Transistor Circuit SymbolsTransistor Circuit Symbols
" NMOS

Body (p-Si substrate)

Drain

Source

Gate

D

S

G B = S #

D

S

G

We always want
D

S

G

Body tied to Source

B
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NMOS Body Terminal (B) NMOS Body Terminal (B) 

M1

VDD

M1

GND

PMOS

NMOS

p+

p+

n+

n-well

n+

n+

p+

S

D

B

D

S

G B = S = GND

Circuit
Schematic

Layout

• A transistor is a 4 
terminal device.
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Transistor Circuit SymbolsTransistor Circuit Symbols
" PMOS

Body (n-well)

Drain

Source

Gate

D

S

G B = S #

We always want

D

S

G

Body tied to Source

B

VDD

D

S

G
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PMOS Body Terminal (B)PMOS Body Terminal (B)

D

S = VDD

G B = S = VDD
M1

VDD

M1

GND

PMOS

NMOS

p+

p+

n+

n-well

n+

n+

p+

S

D

B

Layout
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NMOS and PMOSNMOS and PMOS
" PMOS is complementary to NMOS
" Turn it upside down and switch all signs of 

voltages, VSD # VDS, VGS # VSG.

VGS > 0

D

S

G+

-

NMOS

-

VSG > 0

D

S

G

+
PMOS
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OutlineOutline

" MOS Transistor
! Basic Operation
! Modes of Operation
! Deep sub-micron MOS

" CMOS Inverter

Ch. 3
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Threshold Voltage: ConceptThreshold Voltage: Concept

EE134 30

The Threshold VoltageThe Threshold Voltage

q
TkB

F

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T

i

A
T n

Nln - 

φ

φφ

2φF ≈ -0.6V for p-type substrates

γ is the body factor

VT0 = 0.76 V (NMOS)

0.95 V (PMOS)

AMI C5 process

Fermi Potential
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The Body EffectThe Body Effect

VTO

reverse body bias

0-0.5-1.0-1.5-2-2.5
VSB

0.4

0.5

0.6

0.7

0.8

0.9

V T
(V

)
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The Drain CurrentThe Drain Current

" Charge in the channel is controlled by the 
gate voltage:

" Drain current is proportional to charge x 
velocity:

[ ]TGSoxi VxVVCxQ −−−= )()(
ox

ox
ox t

C ε
=

dx
dVxxv

WxQxvI

nnn

inD

µξµ =⋅−=

⋅⋅−=

)()(

)()(

vn = velocity; W = channel width; ξ = electric field; µn = mobility
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The Drain CurrentThe Drain Current
" Combining velocity and charge:

" Integrating along the length of the channel 
from source to drain:

( ) dVVVVWCdxI TGSoxnD ⋅−−⋅⋅⋅=⋅ µ

( )∫∫ ⋅−−⋅⋅⋅=⋅
DSG V

TGSoxn

L

D dVVVVWCdxI
00
µ

ox

oxn
oxnn t

Ck εµµ ⋅
=⋅=′

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−⋅−⋅⋅⋅=

2

2
DS

DSTGSoxnD
VVVV

L
WCI µ

n+n+

D

S
G

VGS

xL

V(x) +–

VDS

ID
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OutlineOutline

" MOS Transistor
! Basic Operation
! Modes of Operation
! Deep sub-micron MOS

" CMOS Inverter

Ch. 3



EE134

18

EE134 35

Transistor in Linear ModeTransistor in Linear Mode

n+n+

p-substrate

D

S
G

B

VGS

xL

V(x) +–

VDS

ID

VGS > VDS + VT Device turned on (VGS > VT)

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−⋅−⋅⋅⋅=

2

2
DS

DSTGSoxnD
VVVV

L
WCI µ

VDS < VGS - VT
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Transistor in SaturationTransistor in Saturation

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT
+-

Pinch-off

VT < VGS < VDS + VT VDS > VGS - VT

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−⋅−⋅⋅⋅=

2

2
DS

DSTGSoxnD
VVVV

L
WCI µ

( )2
2 TGS

oxn
D VV

L
WCI −⋅⋅

⋅
=
µ
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" For VDS > VGS - VT, the drain current 
saturates: 

" Including channel-length modulation:

( )2
2 TGS

oxn
D VV

L
WCI −⋅⋅

⋅
=
µ

SaturationSaturation

( ) ( )DSTGS
oxn

D VVV
L

WCI λµ
+⋅−⋅⋅

⋅
= 1

2
2

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10-4

VDS(V)

I D
(A

)

slope = λ VDS
= VDS/VA

VA = 1/λ = Early voltage
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Modes of OperationModes of Operation
" Cutoff:

" Resistive or Linear:

" Saturation

VGS < VT
ID = 0

VDS < VGS - VT &  
VGS > VT

VDS > VGS - VT
VGS > VT

( )2
2 TGS

oxn
D VV

L
WCI −⋅⋅

⋅
=
µ

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−⋅−⋅⋅⋅=

2

2
DS

DSTGSoxnD
VVVV

L
WCI µ
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CurrentCurrent--Voltage RelationsVoltage Relations
A good A good olol’’ TransistorTransistor

Quadratic
Relationship

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6
x 10

-4

VDS (V)

I D
(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT
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A model for manual analysisA model for manual analysis
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OutlineOutline

" MOS Transistor
! Basic Operation
! Modes of Operation
! Deep sub-micron MOS

" CMOS Inverter

Ch. 3
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CurrentCurrent--Voltage RelationsVoltage Relations
The DeepThe Deep--Submicron EraSubmicron Era

Linear
Relationship

-4

VDS (V)
0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5
x 10

I D
(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Early Saturation
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Velocity SaturationVelocity Saturation

ξ (V/µm)ξc = 1.5

υ
n

(m
/s

)
υsat = 105

Constant mobility (slope = µ)

Constant velocity
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Velocity SaturationVelocity Saturation

ID
Long-channel device

Short-channel device

VDSVDSAT VGS - VT

VGS = VDD

Saturates sooner
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IIDD versus Vversus VGSGS

EE134 46

IIDD versus Vversus VDSDS
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Including Velocity SaturationIncluding Velocity Saturation

µn chosen empirically
so that

satvcn =
2
ξµ

# µn depends on the 
SPICE model.
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Simple Cheesy Derivation for Velocity Simple Cheesy Derivation for Velocity 
Saturation and Linear Dependence on Saturation and Linear Dependence on 
VVGSGS ( )

DD

THGSox

velocity

nD

vWI

xVVVC
dx
dVWI

D

2

2

)(

ρ

µ
ρ

  

density) (charge 

=

−−′=
4444 34444 21321

By definition, 
dxdV

vv
n =≡

ξ
µ

( )satDS,
sat
dxdV

VVVC
dx
dVvWI THGSoxD −−′=

( )satDS,sat VVVCvWI THGSoxD −−′=
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IIDD versus Vversus VDSDS

EE134 50

Regions of OperationRegions of Operation
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A Unified Model for Manual AnalysisA Unified Model for Manual Analysis
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Simple Model versus SPICE Simple Model versus SPICE 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5
x 10

-4

VDS (V)

I D
(A

)

Velocity
Saturated

Linear

Saturated

VDSAT=VGT

VDS=VDSAT

VDS=VGT
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A PMOS TransistorA PMOS Transistor

-2.5 -2 -1.5 -1 -0.5 0
-1

-0.8

-0.6

-0.4

-0.2

0
x 10

-4

VDS (V)

I D
(A

)

Assume all variables
negative!

VGS = -1.0V

VGS = -1.5V

VGS = -2.0V

VGS = -2.5V
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SubSub--Threshold ConductionThreshold Conduction
(Cut(Cut--off)off)

0 0.5 1 1.5 2 2.5
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

VGS (V)

I D
(A

)

VT

Linear

Exponential

Quadratic

Typical values for S:
60 .. 100 mV/decade

The Slope Factor

ox

DnkT
qV

D C
CneII

GS

+= 1,~ 0    

S is ∆VGS for ID2/ID1 =10

VDS = VDD

S = inverse subtheshold slope
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SubthresholdSubthreshold
" Inverse sub-threshold slope (S)

! Ideal value @ T=300K, n=1,

! For each 60 mV of VGS, the current drops by a 
factor of 10. This is the best that you can do.

! For VDD = 0.4V, the maximum on-off current ratio 
that you can have at T=300K is

! At 373K, the ratio is

( )
decade

mV10ln 60==
q
TkS B

660
400

106.410 ×=

574
400

103.210 ×=
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SubthresholdSubthreshold

" Current in subthreshold

( )DS
qTk

V
qTnk

V

SD VeeII B

DS

B

GS

λ+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−=

−
11 //

( )

10 

    
10 ln

 log10

ln

11 11

q
TnkS

dV
dI

IdV
IdS

B

GS

DS

DSGS

DS

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡

−−

" Inverse subthreshold slope definition
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SubthresholdSubthreshold ConceptsConcepts
" FETs turn off exponentially.

( ) {
⎩
⎨
⎧

==
= C100@  mV/dec 

C27@  mV/dec 10ln o

o

74
60

1n

B
q

TnkS

" Inverse subthreshold slope, S (mV/dec), is 
the figure of merit that tells how well they 
shut off.

1.5typicallyand ≈≥ 1n

" The maximum possible on-off current ratio 
is SV

off

on DD

I
I 10| = max

" 2018 ITRS node has VDD = 0.4V - hence the 
static power problem.

Know this if you are in an interview with a semiconductor co.
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Transistor Model Transistor Model 
for Manual Analysisfor Manual Analysis


