

Agenda Last Lecture Design rules Layout and Design Ties to V_{DD} and GND Padframes Pin Packages Today's Lecture Contacts Basic MOS transistor operation Large-signal MOS model for manual analysis The CMOS inverter

NMOS and PMOS

□ PMOS is complementary to NMOS
 □ Turn it upside down and switch all signs of voltages, V_{SD} → V_{DS}, V_{GS} → V_{SG}.

The Drain Current • Charge in the channel is controlled by the gate voltage: $Q_i(x) = -C_{ox}[V_{GS} - V(x) - V_T] \qquad C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}}$ • Drain current is proportional to charge x velocity: $I_D = -v_n(x) \cdot Q_i(x) \cdot W$ $v_n(x) = -\mu_n \cdot \xi(x) = \mu_n \frac{dV}{dx}$ $v_n = \text{velocity; } W = \text{channel width; } \xi = \text{electric field; } \mu_n = \text{mobility}$

The Drain Current • Combining velocity and charge: $I_D \cdot dx = \mu_n \cdot C_{ox} \cdot W \cdot (V_{GS} - V - V_T) \cdot dV$ • Integrating along the length of the channel from source to drain: $\int_0^L I_D \cdot dx = \int_0^V \mu_n \cdot C_{ox} \cdot W \cdot (V_{GS} - V - V_T) \cdot dV$ $I_D = \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot \left[(V_{GS} - V_T) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right]$ $K'_n = \mu_n \cdot C_{ox} = \frac{\mu_n \cdot \varepsilon_{ox}}{t_{ox}}$

Modes of Operation
• Cutoff:

$$V_{GS} < V_T$$
 $I_D = 0$
• Resistive or Linear:
 $V_{DS} < V_{GS} - V_T \&$
 $V_{GS} > V_T$ $I_D = \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot \left[(V_{GS} - V_T) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right]$
• Saturation
 $V_{DS} > V_{GS} - V_T$
 $V_{GS} > V_T$ $I_D = \frac{\mu_n \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_T)^2$

Subthreshold
• Current in subthreshold

$$I_{D} = I_{S} e^{\frac{V_{GS}}{nk_{B}T/q}} \left(1 - e^{-\frac{V_{DS}}{k_{B}T/q}}\right) (1 + \lambda V_{DS})$$
• Inverse subthreshold slope definition

$$S = \left(\frac{d(\log_{10} I_{DS})}{dV_{GS}}\right)^{-1} = \left(\frac{1}{\ln 10} \frac{1}{I_{DS}} \frac{dI_{DS}}{dV_{GS}}\right)^{-1}$$

$$S = \frac{nk_{B}T}{q} \ln 10$$
EE14

Subthreshold Concepts FETs turn off exponentially. Inverse subthreshold slope, S (mV/dec), is the figure of merit that tells how well they shut off. S = nk_BT/q ln(10) = {60 mV/dec @ 27°C 74 mV/dec @ 100°C n≥1 and typically ≈ 1.5 The maximum possible on-off current ratio is ^{lon}/_{loff} |_{max} = 10^{V_{DD}/S} 2018 ITRS node has V_{DD} = 0.4V - hence the static power problem. Know this if you are in an interview with a semiconductor co.

Transistor Model for Manual Analysis

Table 3.2	Parameters for manual model of generic 0.25 µm CMOS process (minimum length
device).	

	V _I (V)	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	$115 imes 10^{-6}$	0.06
PMOS	-0.4	-0.4	-1	$-30 imes10^{-6}$	-0.1

EE134