Digital Integrated Circuit (IC) Layout and Design

□ EE 134 – Winter 05

- Lecture Tu & Thurs. 9:40 11am ENGR2 142
- 2 Lab sections
 - M 2:10pm 5pm ENGR2 128
 - -F 11:10am 2pm ENGR2 128
- NO LAB THIS WEEK
- FIRST LAB Friday Jan. 20

EE134

People

□ Lecturer - Roger Lake

- Office ENGR2 Rm. 437
- Office hours MW 4-5pm
- rlake@ee.ucr.edu

TA – Faruk Yilmaz

- Office ENGR2 Rm. 222
- Office Hours TBD
- faruk@ee.ucr.edu

EE134 Web-site

http://www.ee.ucr.edu/~rlake/EE134.html

- Class lecture notes
- Assignments and solutions
- Lab and project information
- Exams and solutions
- Other useful links

Text Book

EE134

Digital Integrated Circuits: A Design Perspective, 2nd Ed.

3

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Homework Week 1
Read Chapter 1 of text.
EE134 5
Last Lecture
□ Last lecture
 Moore's Law Challenges in digital IC design for next decade
□ Today
 Review of Moore's Law
Design metrics

Summarizes progress in complexity of ICs

P4 2000

Moore's Law

- In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.
- He made a prediction that semiconductor technology will double its effectiveness every 18 months

64 Khits

1980

1970

Page

1990

Year

2000

2010

EE134

Why Scaling?

□ Technology shrinks by 0.7/generation

- # of transistors / die doubles every 2 years.
- Can integrate 2x more functions per chip.
- Cost per function decreases by 2x.

□ Main problem: power delivery and dissipation.

□ How to design more and more complex chips?

- Designer productivity does not double every two years.
- Understand and exploit different levels of abstraction.
- Automated tools (EDA).

2010 Outlook

Performance 2x / 2 years

- 1 T (Tera) instructions / s
- 20 30 GHz clock

Complexity

- # transistors: 1 Billion
- Die area: 40mm x 40mm

D Power

- 10 kW !
- Leakage: 1/3 of total power

EE134

Design Metrics

How to evaluate performance of a digital circuit (gate, block, ...)?

Outline

- <u>Cost</u>
- Reliability
- Speed
- Power

Cost of Integrated Circuits

NRE (Non-Recurrent Engineering) costs fixed

Design time and effort, mask generation

- Independent of sales volume / number of products
- One-time cost factor
- Indirect costs (company overhead)
 - R&D, manufacturing equipment (Fab), etc.

□ Recurrent costs - variable

- silicon processing, packaging, test
 - proportional to volume
 - proportional to chip area

EE134	

NRE Cost is Increasing

EE134

Yield

die cost =
$$f$$
 (die area)⁴

die cost = f (die area)⁴

 $die \cos t = \frac{Wafer \cos t}{dies \text{ per wafer } \times \text{ Die yield}}$ $dies \text{ per wafer } \propto \frac{1}{die \text{ area}}$ $die \text{ yield } = \left(1 + \frac{\text{ defects per unit area } \times \text{ die area}}{\alpha}\right)^{-\alpha} \qquad \alpha = 3$ $die \text{ yield } \propto \left(\frac{1}{die \text{ area}}\right)^{3}$ $die \cos t \propto (\text{ die area})^{4}$

Some Examples (1994)

Chip	Metal layers	Line width	Wafer cost	Def./ cm ²	Area mm ²	Dies/ wafer	Yield	Die cost
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486 DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
Power PC 601	4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
Super Sparc	3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

EE134

Outline

Design Metrics

- Cost
- Reliability Noise
- Speed
- Power

Reliability – Noise in Digital Integrated Circuits

EE134

Mapping between analog and digital signals

Definition of Noise Margins

Noise Budget

Allocates gross noise margin to expected sources of noise

□ Sources:

- power supply (noise on power supply / ground)
- offset
- cross talk (inductive and capacitance)
- Interference (consequtive signals)
- Timing (jitter and skew)

Differentiate between fixed and proportional noise sources

EE134

Key Reliability Properties

- □ Absolute noise margin values are deceptive
 - a floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage)

Noise immunity is the more important metric – the capability to suppress noise sources

□ Key metrics:

- Noise transfer functions
- Output impedance of the driver
- Input impedance of the receiver

EE134

Regenerative Property

An Old-time Inverter

Outline

Design Metrics

- Cost
- Reliability Noise
- Speed
- Power

Delay Definitions

Propagation delays

Delay Definitions

- $t_{\mbox{\tiny pHL}}$ output high to low delay time
- $t_{\mbox{\tiny DLH}}$ –output low to high delay time
- t_p propagation delay
- t, rise time
- t_f fall time

 $t_p = \frac{t_{pLH} + t_{pHL}}{2}$

 t_p is an mostly used to compare different technologies. Artificial metric.

EE134

Power Dissipation

Instantaneous power: $p(t) = v(t)i(t) = V_{supply} i(t)$

Peak power: $P_{peak} = V_{supply} i_{peak}$

Average power:

$$P_{ave} = \frac{1}{T} \int_{t}^{t+T} p(t) dt = \frac{V_{supply}}{T} \int_{t}^{t+T} i_{supply}(t) dt$$

EE134

Energy and Energy-Delay

Power-Delay Product (PDP) =

E = **Energy per operation** = $P_{av} \times t_p$

Energy-Delay Product (EDP) =

quality metric of gate = $E \times t_p$

A First-Order RC Network

 $\mathbf{E}_{cap} = \int_{0}^{T} \mathbf{P}_{cap}(t) dt = \int_{0}^{T} \mathbf{V}_{out} \mathbf{i}_{cap}(t) dt = \int_{0}^{Vdd} \mathbf{C}_{L} \mathbf{V}_{out} d\mathbf{V}_{out} = \frac{1}{2} \mathbf{C}_{L} \cdot \mathbf{V}_{dd}^{2}$

EE134

Summary Digital integrated circuits have come a long way and still have quite some potential left for the coming decades Some interesting challenges ahead Get a clear perspective on the challenges and potential solutions Understand the design metrics that govern digital design Cost, reliability, speed, power and energy dissipation