
Motion Tracking with Fixed-lag Smoothing:
Algorithm and Consistency Analysis

Tue-Cuong Dong-Si and Anastasios I. Mourikis
Dept. of Electrical Engineering, University of California, Riverside

E-mail: tdong002@student.ucr.edu, mourikis@ee.ucr.edu

Updated: October 11, 2010

Abstract

This report presents a fixed-lag smoothing algorithm for tracking the motion of a mobile robot in real time. The
algorithm processes measurements from proprioceptive (e.g., odometry, inertial measurement unit) and exteroceptive
(e.g., camera, laser scanner) sensors, in order to estimate the trajectory of the vehicle. Smoothing is carried out in the
information-filtering framework, and utilizes iterative minimization, which renders the method well-suited for applica-
tions where the effects of the measurements’ nonlinearity are significant. The algorithm attains bounded computational
complexity by marginalizing out older states. The key contribution of this work is a detailed analysis of the effects of the
marginalization process on the consistency properties of the estimator. Based on this analysis, a linearization scheme that
results in substantially improved accuracy, compared to the standard linearization approach, is proposed. Both simula-
tion and real-world experimental results are presented, which demonstrate that the proposed method attains localization
accuracy superior to that of competing approaches.

1

Contents
1 Introduction and Relation to Prior Work 3

2 Fixed-lag smoothing 4
2.1 Full-state MAP estimation . 4
2.2 Marginalization of old states . 6
2.3 Fixed-lag smoothing algorithm . 8

3 Estimator consistency 9
3.1 Structure of the matrices Anm

full(k
′) and Amar

full (k′) . 10
3.2 Robot motion in 2D . 12

3.2.1 Description of the motion and measurement models . 12
3.2.2 Rank of Anm

full(k
′) . 13

3.2.3 Rank of Amar
full (k′) . 15

3.3 Robot motion in 3D . 16
3.3.1 Description of the motion and measurement models . 16
3.3.2 Rank of Anm

full(k
′) . 17

3.3.3 Rank of Amar
full (k′) . 18

3.4 Impact on the estimator’s consistency . 18
3.5 Improvement of the estimator’s consistency . 19

4 Results 19
4.1 Simulation results: 2D localization . 19
4.2 Real-world experiment: 3D localization . 20

5 Conclusions 21

A Proof of Lemma 1 22

B Proofs for the case of 2D motion 24
B.1 Proof of Lemma 2 . 24
B.2 Proof of Lemma 3 . 25
B.3 Proof of Lemma 4 . 27
B.4 Proof of Lemma 5 . 29

C Proofs for the case of 3D motion 31
C.1 Proof of Lemma 6 . 31
C.2 Proof of Lemma 7 . 34
C.3 Proof of Lemma 10 . 35
C.4 Proof of Lemma 8 . 40
C.5 Proof of Lemma 9 . 42

2

1 Introduction and Relation to Prior Work
In this work, we focus on the problem of motion tracking by combining a robot’s proprioceptive and exteroceptive sensor
measurements. The simplest approach for tracking the trajectory of a robot is dead reckoning, which consists of inte-
grating proprioceptive (e.g., odometry) measurements. However, in most practical cases dead reckoning results in rapid
accumulation of uncertainty, which quickly renders the estimates unusable. To reduce the rate at which the uncertainty in-
creases, we can utilize the measurements from the robot’s exteroceptive sensors (e.g., camera, laser scanner). By detecting
static features in consecutive time instants, the robot can extract useful information about its ego-motion, and utilize it to
improve its pose estimates. We note that in this work, we concentrate on the task of utilizing the local motion information
provided by the robot’s sensors, i.e., we do not address the issue of loop closing.

The processing of exteroceptive sensor measurements for motion tracking has attracted considerable research interest,
primarily in the context of vision-based motion estimation (visual odometry (VO) [1]). A large class of techniques uti-
lize the feature measurements to derive constraints between pairs of consecutive robot poses (e.g., [1–5] and references
therein). However, when a feature is observed from multiple robot poses, pair-wise processing inevitably results in loss
of information. In order to properly utilize the motion information in the (typical) case where features are tracked over
multiple consecutive time instants, pairwise processing is not appropriate. Instead, we must maintain estimates of a sliding
window of poses, since this enables us to process all the relative-motion constraints between these poses. Methods that
estimate the state over a sliding window of time are commonly called fixed-lag smoothing algorithms [6].

While extended Kalman filtering (EKF)-based fixed-lag smoothing approaches to motion estimation have appeared
in the literature (e.g., [7]), these are susceptible to a gradual buildup of linearization errors. This issue is especially
significant in the context of motion tracking, where the absence of landmarks with a priori known positions means that
errors continuously accumulate. For this reason a number of techniques have been proposed, primarily in the computer-
vision literature, that iteratively re-linearize the measurements to better treat nonlinearity [8–12]. In all these approaches
a sliding window of active states is maintained, comprising both camera poses and landmarks, and iterative minimization
is employed for obtaining estimates of all the currently active state variables. As the camera moves in space new states
are being added, while old ones are discarded. A common limitation of the aforementioned techniques is, however, that
the way in which older poses are discarded is not optimal. Specifically, these older poses are assumed to be fixed, and are
used to “bootstrap” the trajectory estimates. This approximate approach ignores the uncertainty of the older poses, and
results in suboptimal estimation.

The theoretically sound method for discarding older states from the sliding window is the process of marginaliza-
tion [13–15]. This process, which appropriately accounts for the uncertainty of the older poses, is employed in our work.
Specifically, the main contributions of this work are the following:
1) We describe in detail the derivation of the marginalization equations, and additionally, we present an analysis of the
effects of the marginalization on the consistency of the state estimates. In particular, we show that due to the marginaliza-
tion process, two different estimates of the same states are used in computing certain Jacobian matrices in the estimator.
In turn, this is shown to cause an infusion of information along directions of the state-space where no actual information
is provided by the measurements (the un-observable directions of the state space). This “artificial” information causes the
estimates to become inconsistent over time, i.e., it causes the actual error covariance to be larger than that reported by the
estimator [16].
2) Based on our analysis, we propose a simple modification in the choice of linearization points, which prevents the in-
troduction of artificial information in the estimator. The resulting algorithm is shown, through both simulation results and
real-world experiments, to perform better than competing approaches. In fact, our results show that the attained accuracy
is almost indistinguishable to that of the full-state maximum-a-posteriori (MAP) estimator, for the cases examined. This
shows that in choosing the linearization points one has to take into account the observability properties of the system at
hand, to ensure that the linearized system shares the same properties.

We note that fixed-lag information smoothing algorithms have also appeared in [14, 15]. However, the effects of the
marginalization process on the consistency of the estimates are not discussed in these publications. To the best of our
knowledge, this is the first work to address this issue. The effects of the choice of linearization points on the consistency
of an estimator have been explored before, but only in the context of EKF-based estimators (see, e.g., [17]).

3

2 Fixed-lag smoothing

2.1 Full-state MAP estimation
We begin by first discussing the full-state maximum-a-posteriori (MAP) estimator [18], which serves as the basis of the
fixed-lag smoothing algorithm, and subsequently describe the marginalization process. This section also introduces the
notation that will be used throughout the report. The list of most important notations used is shown in Table 1 for reference.

At a time-step k , the full-state MAP estimator simultaneously estimates the entire history of robot poses, r0:k =
{r0, . . . , rk} , as well as the positions of all features observed by the robot, l1:n = {l1, . . . , ln} . We denote the dimension
of each robot pose and each landmark position by dr and d`, respectively. Three sources of information are available to the
estimator: (i) The prior information for the initial robot pose, described by a Gaussian pdf with mean r̂p0 and covariance
matrix Rp(0). (ii) The robot motion model, described by the equation

ri+1 = f(ri,ui) + wi, (1)

where ui is the measured control input (e.g., odometry), and wi is the process noise1, assumed to be zero mean, white, and
Gaussian, with covariance matrix Qi. (iii) Finally, the third source of information are the robot-to-landmark measurements
(e.g., camera observations), described by:

zij = h(ri, lj) + nij (2)

where nij is the measurement noise vector, assumed to be zero-mean, white, and Gaussian, with covariance matrix Rij .
Each of the measurements is of dimension dm .

The MAP estimator computes the state estimates that maximize the posterior pdf:

p(r0:k, l1:n|z0:k) = p(r0)
∏

(i,j)∈Sa(k)

p(zij |ri, lj)
k−1∏

i=0

p(ri+1|ri,ui)

where the set Sa(k) contains the pairs of indices (i, j) that describe all the robot-to-landmark measurements through time
k. Maximizing the posterior is equivalent to minimizing the cost function [18]:

c(xk) =
1
2
||r0 − r̂p0 ||Rp(0) +

1
2

∑

(i,j)∈Sa(k)

γhij +
1
2

k−1∑

i=0

γfi (3)

where xk denotes the vector containing all the estimated states, (i.e., all the states in {r0:k, l1:n}), and

γhij = ||zij − h(ri, lj)||Rij , (4)

γfi = ||ri+1 − f(ri,ui)||Qi (5)

with the notation ||a||M = aT M−1a. The size of the state vector xk is denoted as dxk
.

c(xk) is a nonlinear cost function, which can be minimized using iterative Gauss-Newton minimization [13]. At the `-
th iteration of this method, a correction, ∆x(`), to the current estimate, x(`)

k , is computed by minimizing the second-order
Taylor-series approximation of the cost function:

c(x(`)
k + ∆x) ' c(x(`)) + b(`)T ∆x +

1
2
∆xT A(`)∆x (6)

where b(`) = ∇c(x(`)
k) and A(`) = ∇2c(x(`)

k) denote the Jacobian and Hessian of c with respect to xk, evaluated at the
current iteration, x(`)

k . Specifically, b(`) is given by the dxk
× 1 vector:

b(`) = bp
0(x

(`)
k) + bh

Sa(k)(x
(`)
k) + bf

0:k(x(`)
k) (7)

where the three terms appearing in the sum are due to the prior at time step 0, the robot-to-landmark measurements indexed
by Sa(k), and the odometry measurements in the time interval (0, k − 1), respectively:

bp
0(x

(`)
k) = ΠT

dr
Ap(0)(r(`)

0 − r̂p0), (8)

1In the most general case, the process noise may appear in the motion model nonlinearly: ri+1 = f(ri,ui,wi). The treatment of this more general
case proceeds analogously, by linearization of the motion model with respect to the noise. We here present the additive-noise case for clarity.

4

Table 1: List of notations, in alphabetical order

Symbols Definition Defined on pg.
A Hessian of the cost function c with respect to xk 4
Gi process Jacobian, i.e. the Jacobian of gi = ri+1 − f(ri,ui) with respect to xk 6
Hij measurement Jacobian, i.e. the Jacobian of h(ri, lj) with respect to xk 6
HLij

Jacobian of h with respect to the landmark position 6
HRij Jacobian of h with respect to the robot pose 6
Qi covariance matrix of process noise 4

Rp(0) covariance matrix of prior for initial robot pose 4
Rij covariance matrix of measurement noise 4
b Jacobian of the cost function c with respect to the state vector 4
f robot motion model function, ri+1 = f(ri,ui) + wi 4
h measurement model function, zij = h(ri, lj) + nij 4
lj landmark pose vector, which usually is the landmark position 4
nij measurement noise vector 4
ri robot state vector at time step i, which may comprise position, orientation, velocity, etc. 4
r̂p0 prior estimate for initial robot pose 4
ui measured control input vector (e.g., odometry) 4
wi process noise vector 4
xk state vector for the fixed-lag smoother at time step k, containing the states {r0:k, l1:n} 4
xm vector of marginalized states {r0, . . . , rm−1, l1, . . . , lml

} 6
xr vector of states remaining after marginalization {rm, . . . , rk, lml+1, . . . , lN} 6
xn vector of new states after marginalization {rk+1, . . . , rk′ , lN+1, . . . , lN+No} 7
zij measurement vector, observation of landmark j from robot pose i 4
d` dimension of landmark position (e.g. 2 in 2D) 4
dm dimension of measurement observation 4
dr dimension of robot pose (e.g. 3 in 2D) 4
dxk

dimension of state vector xk 4
i index variable for robot poses 4
j index variable for landmarks 4
k time step 4
l total number of measurements 11
li number of landmarks observed at time step i 11
ml number of marginalized landmarks l1, . . . , lml

6
m number of marginalized robot poses r0, . . . , rmr−1 6
n number of landmarks at time step k 4
n′ number of landmarks at time step k′ 7
Sa set of pairs (i, j) indexing the measurements zij that involve currently active states 4
Sm set of pairs (i, j) indexing the measurements zij that involve marginalized states 7
S set of pairs (i, j) indexing all measurements, Sm

⋃Sa(k′) 10
Λf

0:k information matrix due to the process model for the time interval [0, k] 6
Λh
Sa(k) information matrix due to the measurements indexed by Sa(k) 6
Λp

0 information matrix due to the prior at time 0 6
Φi state transition matrix, Jacobian of f(ri,ui) with respect to ri 6

bh
Sa(k)(x

(`)
k) = −

∑

(i,j)∈Sa(k)

H(`)T
ij R−1

ij

(
zij − h(r(`)

i , l(`)j)
)

(9)

bf
0:k(x(`)

k) =
k−1∑

i=0

G(`)T
i Q−1

i

(
r(`)

i+1 − f(r(`)
i ,ui)

)
(10)

5

In these expressions we denote Ap(0) = Rp(0)−1, and

Πdr
=

[
Idr

0dr×(dxk
−dr)

]
(11)

with In being the n × n identity matrix. The matrices H(`)
ij and G(`)

i are the Jacobians of the measurement function,

h(ri, lj), and of the function gi = ri+1 − f(ri,ui), with respect to xk, evaluated at the current iterate x(`)
k . Since both

the measurement function and the motion model involve only two states (either one robot pose and one landmark, or two
consecutive robot poses), the structure of both H(`)

ij and G(`)
i is very sparse. In particular, H(`)

ij is the dm × dxk
matrix:

H(`)
ij =

[
0 . . . H(`)

Rij
. . . H(`)

Lij
. . . 0

]
(12)

where H(`)
Rij

and H(`)
Lij

are the Jacobians of h with respect to the robot pose and the landmark position, respectively, and

G(`)
i is the dr × dxk

matrix:

G(`)
i =

[
0 . . . −Φ(`)

i Idr
. . . 0

]
(13)

where Φ(`)
i is the Jacobian of f(ri,ui) with respect to ri.

In the Gauss-Newton method, and for small-residual problems, the Hessian matrix can be well approximated by [13]:

A(`) = Λp
0 + Λh

Sa(k)(x
(`)
k) + Λf

0:k(x(`)
k), (14)

where

Λp
0 = ΠT

dr
Ap(0)Πdr (15)

Λh
Sa(k)(x

(`)
k) =

∑

(i,j)∈Sa(k)

H(`)T
ij R−1

ij H(`)
ij (16)

Λf
0:k(x(`)

k) =
k−1∑

i=0

G(`)T
i Q−1

i G(`)
i (17)

In the above notation, Λp
0 represents the information due to the prior at time 0, Λh

Sa(k)(x) represents the information

matrix due to the measurements indexed by Sa(k), evaluated using linearization about x, and Λf
0:k(x) is the information

matrix due to the process model for the time interval [0, k], evaluated using linearization about x. All these matrices are
of size dxk

× dxk
.

The value of ∆x(`) minimizing the cost function (6) is found by solving the linear system:

A(`)∆x(`) = −b(`) (18)

Due to the sparse structure of the matrices H(`)
ij and G(`)

i , the Hessian matrix A(`) is sparse (see Fig.1), which can be
exploited in order to speed-up the solution of the linear system in (18) [13, 18].

2.2 Marginalization of old states
As the robot continuously moves and observes new features, the size of the state vector xk constantly increases (approx-
imately linearly in time, if the density of features is approximately constant). Therefore, in order to obtain an algorithm
with approximately constant computational complexity, suitable for real-time applications, we resort to marginalization
of older poses. In this section, we derive the marginalization equations from the perspective of minimization of the cost
function c defined in Eq. (3).

We consider the following scenario: The robot collects measurements during the time interval [0, k], and a full-state
MAP estimation step is carried out at time step k. Then, the states xm = {r0, . . . , rm−1, l1, . . . , lml

} (i.e., the m oldest
robot poses and the ml oldest landmarks, which we can no longer observe) are removed (i.e., marginalized out), and only
the states xr = {rm, . . . , rk, lml+1, . . . , ln} remain active in the sliding window. The robot keeps moving and collecting
measurements in the time interval [k + 1, k′], and as a result, the history of states is augmented by the new robot and

6

landmark states xn = {rk+1, . . . , rk′ , ln+1, . . . , ln′} . Now, at time step k′, the sliding window contains the states xr and
xn, and we would like to compute the MAP estimate for these states.

To compute the optimal MAP estimate at time k′, one has to minimize a cost function c(xk′), which is analogous to
the one in (3). This cost function has the special structure shown below:

c(xk′) = c(xm,xr,xn) = cn(xr,xn) + cm(xr,xm) (19)

The cost term cn(xr,xn) in the above expression contains all quadratic terms that involve states in xr only, states in xn

only, or terms involving one state in xr and one in xn. On the other hand, cm(xr,xm) contains all quadratic terms that
involve states in xm only, as well as terms involving one state in xm and one in xr. Since states marginalized at time step
k do not participate in any measurements after that time (they are older robot poses, and features that can no longer be
seen), there do not exist quadratic terms jointly involving states in xn and xm.

It is important to observe that even though the states xm and the associated measurements are no longer kept in the
estimator, their values are not known, and therefore the above minimization needs to occur with respect to xm as well.
In what follows, we show what data we need to keep after the marginalization at time step k, to be able to carry out
this minimization. We start by utilizing the decomposition of the cost function in (19), to employ the following property,
which holds for any multi-variable optimization problem:

min
xm,xr,xn

c(xm,xr,xn) = min
xr,xn

(
min
xm

c(xm,xr,xn)
)

= min
xr,xn

(
cn(xr,xn) + min

xm

cm(xr,xm)
)

(20)

The above reformulation of the minimization problem entails no approximation. We now focus on the minimization
of cm with respect to xm. cm is given by:

cm(xr,xm) =
1
2
||r0 − r̂p0 ||Rp(0) +

1
2

∑

(i,j)∈Sm

γhij +
1
2

m−1∑

i=0

γfi

where Sm is the set of indices (i, j) describing all the robot-to-landmark measurements that involve either marginalized
robot poses or marginalized landmarks (or both). Since the measurement and process-model functions are nonlinear,
the minimization of cm with respect to xm cannot be carried out exactly, and we once again employ the second-order
Taylor-series approximation:

cm ' cm(x̂r(k), x̂m(k)) + bm(k)
T

[
xm − x̂m(k)

xr − x̂r(k)

]
+

1
2

[
xm − x̂m(k)

xr − x̂r(k)

]T

Am(k)

[
xm − x̂m(k)

xr − x̂r(k)

]

where bm(k) = ∇cm(x̂r(k), x̂m(k)) is the Jacobian, and Am(k) = ∇2cm(x̂r(k), x̂m(k)) the Hessian matrix of cm,
evaluated at the MAP estimates of xr and xm at time step k:

bm(k) = bp
0(x̂r(k), x̂m(k)) + bh

Sm
(x̂r(k), x̂m(k)) + bf

0:m(x̂r(k), x̂m(k)) (21)

Am(k) = Λp
0 + Λh

Sm
(x̂r(k), x̂m(k)) + Λf

0:m(x̂r(k), x̂m(k)) (22)

For the following derivations, it will be convenient to define the block partitioning of the Jacobian and Hessian matrices
of cm as follows (see Fig. 1):

bm(k) =
[
bmm(k)

bmr(k)

]
Am(k) =

[
Amm(k) Amr(k)

Arm(k) Arr(k)

]
(23)

where the dimensions of the blocks correspond to the dimensions of xm and xr, and the time-step argument (k) denotes
the fact that all quantities in these matrices are evaluated using the state estimates at time k. At this point, we note that the
cost function in (21) is a quadratic function of xm, and its minimum with respect to xm is attained for

xm = x̂m(k)−Amm(k)
−1(bmm(k) + Amr(k)(xr − x̂r(k)))

Substitution in (21) yields the minimum value of cm with respect to xm:

min
xm

cm ' κ + bT
p (k)(xr − x̂r(k)) +

1
2
||xr − x̂r(k)||Ap(k)

7

Figure 1: Illustration of the sparsity patterns in the matrices appearing in the fixed-lag smoothing algorithm. Here we
employ a temporal ordering of the variables (i.e., robot poses and landmarks enter the state vector in the order they appear
in time), although during the solution of the system, any alternative variable ordering can be used if desired, to speed-up
computations.

where κ is a constant independent of xr and xm, and

bp(k) = bmr(k)−Arm(k)Amm(k)
−1bmm(k) (24)

Ap(k) = Arr(k)−Arm(k)Amm(k)
−1Amr(k) (25)

Combining this result with that of (20), we see that the minimization of the cost function c(xm,xr,xn) with respect to
the entire history of states is approximately equivalent to the minimization, with respect to {xr,xn}, of:

c′(xr,xn) = bT
p (k)(xr − x̂r(k)) +

1
2
||xr − x̂r(k)||Ap(k) +

1
2

∑

(i,j)∈Sa(k′)

γhij +
1
2

k′−1∑

i=m

γfi (26)

where the set Sa(k′) contains the (i, j) indices corresponding to all the active measurements at time-step k′ (i.e., all
measurements involving states in xr and xn). It is important to note that the above cost function does not depend on xm.
Thus, if after marginalization at time step k we store Ap(k), bp(k), and x̂r(k), the above minimization can still be carried
out. The only approximation here lies in the fact that the term cm has been permanently approximated by the second-order
Taylor series approximation of (21). This will introduce small errors in the MAP estimates for {xr,xn}, but if the states
we chose to marginalize at time step k are old, “mature” ones, for which good estimates are available, the effect of the
approximation will be small. On the other hand, the gain from employing this approximation is that the states xm and all
measurements that directly involve them can be discarded, yielding an algorithm with constant-time and constant-memory
requirements.

The minimization of c′(xr,xn) at time-step k′ is carried out by the Gauss-Newton method. Similarly to the previous
case, during the `-th iteration, the correction to the active states xr,xn, is computed by solving the sparse linear system
A(`)∆x = −b(`), where:

b(`) = bp
k(x(`)

r) + bh
Sa(k′)(x

(`)
r ,x(`)

n) + bf
m:k′(x

(`)
r ,x(`)

n) (27)

A(`) = Λp
k + Λh

Sa(k′)(x
(`)
r ,x(`)

n) + Λf
m:k′(x

(`)
r ,x(`)

n) (28)

The terms in the above expressions are defined analogously to those in (7)-(14), with the exception of bp
k(x(`)

r), which is
given by:

bp
k(x(`)

r) = Πrbp(k) + ΠrAp(k)(x(`)
r − x̂r(k)) (29)

with Πr = [Idimxr 0 0 ...].

2.3 Fixed-lag smoothing algorithm
We can now describe the entire fixed-lag smoothing estimation algorithm (see Algorithm 1). During each estimation step,
updates are computed for all the states that are in the currently active state vector by solving the sparse linear system

8

Algorithm 1 Fixed-Lag Information Smoothing
Initialization:
Prior information: Ap(0) = R−1

p (0), Prior estimate: x̂p = r̂p0 , Prior constant vector for use in (29): bp = 0.

MAP Estimation
Starting from an initial estimate, iteratively compute corrections to the state by solving the sparse linear system
A(`)∆x = −b(`), where A(`) and b(`) are defined in (27)-(29), respectively. Repeat until convergence.

Marginalization

• Set the new prior estimate as x̂p = x̂r(k), and compute the new prior information matrix Ap and vector bp via (24)
and (25).

• Remove the states xm from the active state vector, and discard all measurements that involve these states.

defined by (27) and (28). If the covariance matrix of the sliding window estimates is needed, it can be computed after
the iteration converges as the inverse of the information matrix, A(`). Moreover, if desired we can marginalize out a
number of states, so as to reduce the size of the actively estimated state vector. If, at time-step k, we choose to marginalize
out the states xm, the current estimate x̂r(k) will take the place of the prior, the prior information matrix Ap(k) will be
computed via (25), and the vector bp(k) via (24). Once these quantities have been computed, the states xm, as well as all
measurements that directly involve them, can be discarded.

It is important to examine the structure of the prior information matrix Ap. As discussed earlier, in the case of the
full-state MAP, the Hessian matrix A is sparse, which significantly speeds up computation. We now show that, typically,
the same holds in the case of fixed-lag smoothing. Fig. 1 illustrates the sparsity pattern of the full-state Hessian, A,
for a typical trajectory of interest. We observe that since in the case of motion tracking under consideration (i) no loop
closures occur, (ii) the number of landmarks seen by the robot at any time instant is limited, and (iii) each feature is not
observed over very long time periods, A is a sparse band matrix. Moreover, it is well-known that the marginalization
of a state variable only introduces fill-in in rows and columns corresponding to variables directly connected to it via
measurements [13]. Therefore, the marginalization of old robot poses and old landmarks typically results in a sparse
matrix Ap, as shown in Fig. 1. Thus we are still able to employ sparse-matrix techniques for the solution of the Gauss-
Newton system.

3 Estimator consistency
A key benefit of the fixed-lag smoother presented in the preceding section is the fact that it iteratively re-linearizes the
measurements. This enables the algorithm to reduce the effects of the linearization errors, and thus to attain improved
accuracy, compared to methods which do not employ re-linearization (e.g., EKF methods). Clearly, having small lin-
earization errors is a key requirement for the consistency of an estimator; if large, unmodeled linearization errors exist,
the accuracy claimed by the estimator will be too optimistic, and the estimates will be inconsistent. In this section, we
examine a different factor that can cause inconsistency of the estimates. Specifically, we show that when the Jacobian
matrices of the measurements are computed using the latest available state estimates (the “standard” option), the smoother
will gain fictitious information, along directions of the state space where no real information is provided by the measure-
ments. The immediate result of this is inconsistency, i.e., state estimates whose accuracy is worse than the one claimed
by the estimator. Moreover, the over-confidence of the estimator about the accuracy of the state estimates along certain
directions of the state space leads to inaccurate state updates, and thus a degradation of accuracy, as shown in the results
of the next section.

In what follows, we focus on the scenario described in Section 2.2, i.e., marginalization of the states xm at time-step
k, and a new estimation step at time-step k′. Once the Gauss-Newton iteration at time k′ has converged, the information
(i.e., inverse covariance) matrix for the active states is given by

A(k′) = Λp
k + Λh

Sa(k′)(x̂r(k′), x̂n(k′)) + Λf
m:k′(x̂r(k′), x̂n(k′)) (30)

Our goal is to show that the linearization employed during the marginalization process results in the addition of non-
existent information to the estimator, by studying the properties of A(k′). To this end, we first note that A(k′) is the Schur

9

complement of Amm(k) in the following matrix:

Amar
full (k′) = Λp

0 + Λh
Sm

(x̂m(k), x̂r(k)) + Λf
0:m(x̂m(k), x̂r(k)) + Λh

Sa(k′)(x̂r(k′), x̂n(k′))+Λf
m:k′(x̂r(k′), x̂n(k′))

=
[

Amm(k) Amr(k)Πr

ΠT
r Arm(k) ΠT

r Arr(k)Πr

]
+

[
0 0
0 A(k′)−Λp

k

]

(31)
It is important to observe that Amar

full (k′) represents the available information for the entire history of states {xm,xr,xn}.
To see why this is the case, recall that the union of the sets Sm and Sa(k′) is the set of all measurements recorded in
the time interval [0, k′], and thus the matrices Λh

Sm
(x̂m(k), x̂r(k)) and Λh

Sa(k′)(x̂r(k′), x̂n(k′)), taken together, represent

all the available measurement information. Similarly, Λf
0:m(x̂m(k), x̂r(k)) and Λf

m:k′(x̂r(k′), x̂n(k′)) together represent
all the available process-model information, while Λp

0 is the prior. Thus, the matrix Amar
full (k′) is analogous to the infor-

mation matrix that would arise from a full-state MAP estimate at time step k′, but with the important difference that in
Amar

full (k′), some of the Jacobian matrices are evaluated at the state estimates {x̂m(k), x̂r(k)}, while others are evaluated at
{x̂r(k′), x̂n(k′)}. We now show that this difference results in the “infusion” of artificial information into the estimation
process.

To prove this result, we focus on the information provided to the estimation process by the process model and the
feature measurements. For this reason, for the moment we consider the case where the prior is zero, i.e., Λp = 0. In this
case, Amar

full (k′) becomes

Amar
full (k′) = Λh

Sm
(x̂m(k), x̂r(k)) + Λf

0:m(x̂m(k), x̂r(k)) + Λh
Sa(k′)(x̂r(k′), x̂n(k′))+Λf

m:k′(x̂r(k′), x̂n(k′)) (32)

On the other hand, if we had carried out a full-state MAP estimation at time step k′, without having previously marginal-
ized any states, the information matrix would be equal to:

Anm
full(k

′) = Λh
S(x̂m(k′), x̂r(k′), x̂n(k′)) + Λf

0:k′(x̂m(k′), x̂r(k′), x̂n(k′)) (33)

where S = Sm

⋃Sa(k′) be the set of all measurements recorded in the time interval [0, k′].
A key result that we prove is that

rank(Amar
full (k′)) > rank(Anm

full(k
′)) (34)

This shows that computing the information matrix Amar
full (k′) using two different estimates for the states xr leads to an

increase of its rank. Clearly, this increase is incorrect, since it is not justified by any new measurement information. In the
following subsections, we will provide the proof for the above result by analyzing the rank of matrices Anm

full and Amar
full

for the case of both 2D and 3D motion, with common measurement methods. Please refer to Table 1 for definitions of
symbols used in the derivation.

3.1 Structure of the matrices Anm
full(k

′) and Amar
full (k′)

We start by examining the structure of matrices Anm
full(k

′) and Amar
full (k′). Using the definition of these matrices in (32)

and (33), we see that we can rewrite these matrices as follows:

Anm
full(k

′) =
∑

(i,j)∈S
HT

ij(k′)R−1
ij Hij(k′) +

k′−1∑

i=0

GT
i (k′)Q−1

i Gi(k
′) (35)

=




G0(k′)
...

Gk′−1(k′)
...

Hij(k′)
...




T

︸ ︷︷ ︸
WT (k′)




Q−1
0 . . . 0 0

0
. . . 0 0

0
. . . Q−1

k′−1 0 . . . 0

0 . . . 0
. 0

0 0 R−1
ij 0

0 0
. . .




︸ ︷︷ ︸
S




G0(k′)
...

Gk′−1(k′)
...

Hij(k′)
...




︸ ︷︷ ︸
W(k′)

(36)

= WT
(k′)SW(k′) (37)

10

and

Amar
full (k′) =




G0(k)

...
Gm−1(k)

Gm(k′)
...

Gk′−1(k′)
...

Hij(k)

...

...
Hij(k′)

...




T

︸ ︷︷ ︸
WT (k,k′)




Q−1
0 . . . 0 0

0
. . . 0 0

0
. . . Q−1

k′−1 0 . . . 0

0 . . . 0
. 0

0 0 R−1
ij 0

0 0
. . .




︸ ︷︷ ︸
S




G0(k)

...
Gm−1(k)

Gm(k′)
...

Gk′−1(k′)
...

Hij(k)

...

...
Hij(k′)

...




︸ ︷︷ ︸
W(k,k′)

(38)

= WT (k, k′) S W(k, k′) (39)

The first k′ block rows of the matrices W(k′) and W(k, k′) correspond to the odometry measurements, while the remaining
block rows correspond to the robot-to-landmark measurements (Hij and Gi are defined in Eq. (12) and (13), respectively).
Therefore, these matrices have k′dr + ldm rows and (k′ + 1)dr + nd` columns each. We once again stress that Anm

full(k
′)

and Amar
full (k′) have the same structure, and the only difference between these matrices is the state estimates at which

some of the Jacobians are evaluated. As a result, the matrices W(k′) and W(k, k′) also have the same structure, and the
only difference lies in the state estimates at which the Jacobians are evaluated. Specifically, we here consider the case
where at time step k the m oldest robot poses, r0:m−1, are marginalized along with the ml oldest landmarks, which are
seen only by marginalized poses. As a result, in the matrix W(k, k′) the Jacobians of all measurements that that involve
marginalized poses (the matrices Gi for i = 0, . . .m−1, and the matrices Hij where (i, j) ∈ Sm) are evaluated using the
state estimates available at time-step k, while all other Jacobians are evaluated using the estimates available at time-step
k′. The parts of the matrix W(k, k′) that are evaluated using different state estimates are indicated with the dashed lines
in (38). On the other hand, in the matrix W(k′), all Jacobians are evaluated using the state estimates at time-step k′.

In the following derivations, for clarity, we will employ the following ordering of the variables: all the robot poses
will come first in the temporal order, followed by all the landmarks. As a result, using the definition of the matrices Hij

and Gi in (12) and (13), respectively, we obtain the structure of the matrices W(k′) and W(k, k′) is as follows:

W =




G0

...
Gk′−1

...
Hij

...




=




−ΦR0 Idr . . . 0dr×dr 0dr×nd`

...
.

...
...

0dr×dr . . . −ΦRk′−1
Idr 0dr×nd`

HR0 0dml0×dr HL0

0dmli×dr HR1 . . .
...

...
... . . .

. . . 0dmli+1×dr

...
0dmlk′×dr HRk′ HLk′




(40)

where the time-step indices have been omitted, since the above structure is shared by both W(k′) and W(k, k′). In the
above, the matrices HRi and HLi are block matrices that contain the Jacobians of all the robot-to-landmark measurements
at time-step i. Specifically, if at time-step i the robot observes li landmarks then HRi is an li× 1 block vector, containing
the Jacobians HRij , while HLi contains li block rows, where each row contains the Jacobian HLij at the jth position:

HRi =




HRij1

HRij2
...

HRijli


 , HLi =




0 HLij1
. 0

HLij2
0 0

...
...

...
...

...
0 . . . HLijli

. . . 0


 (41)

11

Exploiting the special structure shown above allows us to prove the following result:

Lemma 1. The rank of the matrix Anm
full(k

′) is given by:

rank(Anm
full(k

′)) = k′dr + rank(M(k′)) (42)

where
M(k′) = [MR(k′) ML(k′)] (43)

with

MR(k′) =




HR0 (k′)
HR1 (k′)ΦR0 (k′)

...
HRk′−1

(k′)ΦRk′−2
(k′) . . .ΦR0 (k′)

HRk′ (k
′)ΦRk′−1

(k′) . . .ΦR0 (k′)




, ML(k′) =




HL0 (k′)
...
...

HLk′ (k
′)




(44)

Similarly, the rank of the matrix Amar
full (k′) is given by:

rank(Amar
full (k′)) = k′dr + rank(M(k, k′)) (45)

where
M(k, k′) = [MR(k, k′) ML(k, k′)] (46)

with

MR(k, k′) =




HR0 (k)

HR1 (k)ΦR0 (k)

...
HRm−1 (k)ΦRm−2 (k) . . .ΦR0 (k)

HRm (k′)ΦRm−1 (k) . . .ΦR0 (k)

HRm+1 (k′)ΦRm (k′) . . .ΦR0 (k)

...
HRk′−1

(k′)ΦRk′−2
(k′) . . .ΦR0 (k)

HRk′ (k
′)ΦRk−1 (k′) . . .ΦR0 (k)




, ML(k, k′) =




HL0 (k)

...
HLm−1 (k)

HLm (k′)
...

HLk′ (k
′)




(47)

Proof. See Appendix A.

Note that the above result does not make any assumptions about the dimension of the robot or landmark poses or
about the type of measurements available. In the following subsections, we analyze the rank of the matrices Anm

full(k
′) and

Amar
full (k′) for 2D and 3D motion, with commonly used measurement models.

3.2 Robot motion in 2D
3.2.1 Description of the motion and measurement models

For the case of 2D motion, a robot pose is characterized by its 2D position and orientation, ie., ri = [pT
Ri

φRi] and
dr = 3, while a landmark is described by its 2D position, ie., lj = pLj and d` = 2. In the propagation step, the pose
change between two consecutive time steps is estimated based on odometry measurements. The propagation equations
are given by:

p̂Ri+1 = p̂Ri + C(φ̂Ri)
Ri p̂Ri+1 (48)

φ̂Ri+1 = φ̂Ri + Ri φ̂Ri+1 (49)

where C(.) denotes the 2× 2 rotation matrix, and Ri x̂Ri+1 = [Ri p̂Ri+1
Ri φ̂Ri+1]

T is the estimate of the change in robot
pose between time steps i and i + 1, based on odometry measurements. The estimate is corrupted by zero-mean, white
Gaussian noise wi, with covariance matrix Qi. The process model is nonlinear, and can be described by the following
nonlinear function:

xi+1 = f(xi,
Ri x̂Ri+1 + wi) (50)

12

The linearized error-state propagation equation for the above state propagation equation is given by:

x̃Ri+1 = ΦRi
x̃Ri

+ ΓRi
wi (51)

where ΦRi and ΓRi are obtained from the state propagation equations (48):

ΦRi
=

[
I2 JC(φ̂Ri)

Ri p̂Ri+1

01×2 1

]
(52)

≡
[

I2 J(p̂Ri+1 − p̂Ri
)

01×2 1

]
(53)

ΓRi
=

[
C(φ̂Ri) 02×1

01×2 1

]
(54)

with J ,
[

0 −1
1 0

]
. The form of the propagation equations presented above is general, and holds for any robot

kinematic model (e.g., unicycle, bicycle).
The robot-to-landmark measurement ziij is a function of the relative position of the landmark with respect to the

robot, which we denote by ∆pij = CT (φRi)(pLj − pRi). Therefore,

zij = h(∆pij) + nij = h(ri, lj) + nij (55)

The measurement function h′ can have several forms. For example, it can be the direct measurement of relative position,
a pair of range and bearing measurements, bearing-only measurements from a monocular camera, etc. Generally, the
measurement function is nonlinear. Using the chain rule of differentiation, we can compute the Jacobians with respect to
the robot pose and the landmark position, as:

HRij =
∂zij

∂∆pij

∂∆pij

∂ri
= ∇hijCT (φ̂Ri)[−I2 − J(p̂Lj − p̂Ri)] (56)

HLij =
∂zij

∂∆pij

∂∆pij

∂lj
= ∇hijCT (φ̂Ri) (57)

where ∇hij is the Jacobian of h with respect to the relative robot-landmark position ∆pij . From Eq. (56), we note that:

HRij = HLij [−I2 − J(p̂Lj − p̂Ri)] (58)
= HLijH

′
Rij

(59)

with H′
Rij

= [−I2 − J(p̂Lj − p̂Ri)]. This is a useful property, which we will use in the analysis that follows.

3.2.2 Rank of Anm
full(k

′)

We will first employ the result of Lemma 1 to compute the rank of the matrix Anm
full(k

′) in the case of 2D motion. Using
the result of (58), we can obtain the following decomposition of the matrix M(k′):

M(k′) = D(k′)K(k′) (60)

where D(k′) is a block diagonal matrix:

D(k′) = Diag
(
HLij (k′)

)
, (i, j) ∈ S (61)

and K(k′) is given by
K(k′) = [KR(k′) KL] (62)

with

KR(k′) =




H′
R0

(k′)
H′

R1
(k′)ΦR0 (k′)

...
H′

Rk′−1
(k′)ΦRk′−2

(k′) . . .ΦR0 (k′)

H′
Rk′

(k′)ΦRk′−1
(k′) . . .ΦR0 (k′)




, KL =




H′
L0

H′
L1
...

H′
Lk′−1

H′
Lk′




(63)

13

In the above, H′
Ri

(k′) is the matrix that results from factoring out HLij (k′) from each row of HRi (k
′), ie.,

H′
Ri

(k′) =




H′
Rij1

(k′)

H′
Rij2

(k′)
...

H′
Rijli

(k′)




=




−I2 −J(p̂Lj1
(k′)− p̂Ri (k

′))
−I2 −J(p̂Lj2

(k′)− p̂Ri (k
′))

...
−I2 −J(p̂Ljli

(k′)− p̂Ri
(k′))


 , H′

Li
=




0 I2 0
I2 0 0
...

...
...

...
...

0 . . . I2 . . . 0


 (64)

Our goal is to find the rank of the matrix M(k′), which will in turn allow us to compute the rank of Anm
full(k

′) using the
result of Lemma 1. To this end, we will use the following result [19, 4.5.1]:

rank(M(k′)) = rank(D(k′)K(k′))

= rank(K(k′))− dim(N (D(k′))
⋂
R(K(k′))) (65)

where N and R denote the null space and the range of a matrix, respectively. The following two lemmas allow us to
obtain the final result:

Lemma 2. When the robot is moving in 2D, and observes n landmarks in total,

rank(K(k′)) = 2n (66)

Proof. See Appendix B.1.

Lemma 3. When the robot-to-landmark measurements are relative positions, relative ranges, or relative bearings, and
for general robot motion,

dim(N (D(k′))
⋂
R(K(k′))) = 0 (67)

Proof. See Appendix B.2.

Combining the results of (42), (65), (66) and (67), we conclude that when the robot is moving in 2D, and observes
landmarks using relative-position, relative-range, or relative-bearing sensors, then

rank(Anm
full(k

′)) = 3k′ + 2n (68)

It is important to note that the dimension of the matrix Anm
full(k

′) is equal to 3(k′+1)+2n (since Anm
full(k

′) is the information
matrix for the entire state, which contains k′ + 1 robot poses and n landmarks). Therefore, the matrix is rank deficient by
3, and has a nullspace of dimension 3. By inspection, a basis for the nullspace can be found, and is given by the columns
of the matrix:

N(k′) =




I2 Jp̂R0 (k′)
01×2 1

...
...

I2 Jp̂Rk′ (k
′)

01×2 1
I2 Jp̂L1 (k′)
...

...
I2 Jp̂Ln (k′)




(69)

The physical interpretation of this result is that using only the robot-to-landmark measurements, only the relative positions
between the robot poses and the landmarks can be estimated with bounded uncertainty, while the global position and
orientation of the state vector cannot be determined. (Note that the first two columns of N correspond to global translations
of the state vector, while the third column to global rotations).

14

3.2.3 Rank of Amar
full (k′)

To compute the rank of the matrix Amar
full (k′), we proceed in a manner similar to the analysis for the rank of Anm

full(k
′). We

first employ the property in (58) to perform the following decomposition:

M(k, k′) = D(k, k′)K(k, k′) (70)

where D(k, k′) is the block diagonal matrix:

D(k, k′) =
[
Dm(k) 0

0 Da(k′)

]
, with (71)

Dm(k) = Diag(HLij
(k)), (i, j) ∈ Sm (72)

Da(k′) = Diag(HLij (k′)), (i, j) ∈ Sa (73)

and
K(k, k′) = [KR(k, k′) KL] (74)

with

KR(k, k′) =




H′
R0

(k)

H′
R1

(k)ΦR0 (k)

...
H′

Rm−1
(k)ΦRm−2 (k) . . .ΦR0 (k)

H′
Rm

(k′)ΦRm−1 (k) . . .ΦR0 (k)

H′
Rm+1

(k′)ΦRm (k′) . . .ΦR0 (k)

...
H′

Rk′−1
(k′)ΦRk′−2

(k′) . . .ΦR0 (k)

H′
Rk′

(k′)ΦRk−1 (k′) . . .ΦR0 (k)




, KL =




H′
L0
...

H′
Lm−1

H′
Lm

...
H′

Lk′




(75)

where the above terms are defined similarly to those in (63) and (64). Again, the difference lies in the state estimates used
to evaluate those Jacobians that involve marginalized states. It is interesting to note that the matrix KL above is the same
as that in (64).

To compute the rank of the matrix M(k′) we will once again use the property:

rank(M(k, k′)) = rank(D(k, k′)K(k, k′)) = rank(K(k, k′))− dim(N (D(k, k′))
⋂
R(K(k, k′))) (76)

Similarly to the previous section, we evaluate the two terms in the above equation separately, and state the results in the
following two lemmas:

Lemma 4. When the robot is moving in 2D, and observes n landmarks in total,

rank(K(k, k′)) = 2n + 1 (77)

Proof. See Appendix B.3.

Lemma 5. When the robot-to-landmark measurements are relative positions, relative ranges, or relative bearings, and
for general robot motion,

dim(N (D(k, k′))
⋂
R(K(k, k′))) = 0 (78)

Proof. See Appendix B.4.

Using the above results, in conjunction with (45), we obtain the following key relationship:

rank(Amar
full (k′)) = 3k′ + 2n + 1 = rank(Anm

full(k
′)) + 1 (79)

We have therefore proved that the rank of the information matrix is increased by one, compared to the case where all the
Jacobians are evaluated using the same state estimates. Moreover, a basis for the nullspace of the matrix Amar

full (k′) (which
is now of dimension 2) can be found by inspection, and is given by the first two columns of the matrix N(k′) in (69).
We thus see that the “missing” direction of the nullspace is the one that corresponds to the global orientation of the state
vector. In turn, this implies that the estimator erroneously believes the global orientation to be observable, based on the
available measurements. The ramifications of this result are further discussed in Section 3.4.

15

3.3 Robot motion in 3D
3.3.1 Description of the motion and measurement models

In the case of 3D motion, typically either an inertial measurement unit (IMU) or a statistical motion model (e.g., constant
velocity, constant acceleration) is used for propagating the state estimates. We here focus on the case where an IMU is
used for 3D motion tracking. For simplicity, in this analysis, we assume that the IMU biases are known a priori, and don’t
need to be estimated online. Therefore the IMU state vector comprises the IMU orientation, position, and velocity. We
employ a unit-quaternion description of orientation, and therefor the IMU state is given by:

r =




qR

pR

vR


 (80)

Where qR is the unit quaternion representing the rotation between the robot (IMU) frame and the global frame, while
pR and vR represent the IMU position and velocity in the global frame, respectively. The discrete-time state propagation
equations are computed by integration of the nonlinear continuous-time system model [20], and by linearization we obtain
the linearized error-state propagation equations:

δri+1 = ΦRi
δri + wi (81)

where δri is the 9× 1 error-state vector, defined as:

δri =




δθRi

p̃Ri

ṽRi




In the above expression, p̃Ri and ṽRi are the estimation errors (difference between the actual and estimated value) for the
IMU position and velocity, while δθRi is the 3 × 1 orientation error vector [20]. The state-transition matrix ΦRi in (81)
is given by:

ΦRi =




Ri+1
Ri

R 03×3 03×3

−b(p̂Ri+1 − p̂Ri − v̂Ri(
i+1
i ∆t)− g

2 (i+1
i ∆t)2)×cCT (q̂Ri) I3

i+1
i ∆tI3

−b(v̂Ri+1 − v̂Ri − g(i+1
i ∆t))×cCT (q̂Ri) 03×3 I3


 (82)

where i+1
i ∆t = ti+1 − ti is the time difference between time-steps i and i + 1, g is the gravitational acceleration vector,

and C(q̂Ri) is the 3× 3 rotation matrix corresponding to q̂Ri .
The sensor measurement is a function of the relative position of the landmark with respect to the robot:

zij = h(∆pij) + nij = h(pRi ,pLj) + nij (83)

where
∆pij = C(qRi)(pLj − pRi) (84)

The Jacobians of the measurement model with respect to the robot and landmark states are given by:

HRij = ∂zij

∂∆pij
∂∆pij

∂ri
= ∇hij C(qRi)

[b(pLj − pRi)×cCT (qRi) −I3 03×3

]

HLij = ∂zij

∂∆pij
∂∆pij

∂lj
= ∇hij C(qRi)

(85)

where ∇hij is the Jacobian of h with respect to the relative robot-landmark position ∆pij . Similarly to Section 3.2, we
can write:

HRij = HLij

[b(pLj − pRi)×cCT (qRi) −I3 03×3

]

= HLijH
′
Rij

(86)

16

3.3.2 Rank of Anm
full(k

′)

We now employ the result of Lemma 1 to compute the rank of the matrix Anm
full(k

′) in the case of 3D motion with an IMU
used for state propagation. In this case, we have dr = 9, and d` = 3. Owing to the similar structure of the 2D and 3D
measurement models (see (58) and (86)), the analysis is very similar. Specifically, we can obtain a decomposition of the
matrix M(k′) that appears in Lemma 1 in the same way as in (60)-(63), with

H′
Ri

(k′) =




H′
Rij1

(k′)

H′
Rij2

(k′)
...

H′
Rijli

(k′)




=




b(pLj1
(k′)− pRi (k

′))×cCT (qRi (k
′)) −I3 03×3

b(pLj2
(k′)− pRi (k

′))×cCT (qRi (k
′)) −I3 03×3

...
b(pLjli

(k′)− pRi (k
′))×cCT (qRi (k

′)) −I3 03×3


 (87)

H′
Li

=




03×3 I3 03×3

I3 03×3 03×3

...
...

...
...

...
03×3 . . . I3 . . . 03×3


 (88)

To compute the rank of the matrix M(k′) we will proceed similarly to Section 3.2, using the result of (65) and the following
two lemmas:

Lemma 6. The rank of the matrix K(k′) for 3D motion tracking with an IMU is 3n + 5, where n is the number of
landmarks.

Proof. See Appendix C.1.

Lemma 7. When the robot-to-landmark measurements are relative-position measurements or camera measurements, and
for general motion,

dim(N (D(k′))
⋂
R(K(k′))) = 0 (89)

Proof. See Appendix C.2.

Using the above results, we conclude that when the robot-to-landmark measurements are relative-position measure-
ments or camera measurements, in general, we have:

rank(M(k′)) = rank(K(k′))︸ ︷︷ ︸
3n+5

− dim(N (D(k′))
⋂
R(K(k′)))

︸ ︷︷ ︸
0

= 3n + 5 (90)

Together with Lemma 1, with dr = 9, we obtain:

rank(Anm
full(k

′)) = 9k′ + rank(M(k′))︸ ︷︷ ︸
3n+5

= 9k′ + 3n + 5 (91)

Since Anm
full(k

′) is a (9(k′ + 1) + 3n) × (9(k′ + 1) + 3n) matrix, this result shows that the nullspace of Anm
full(k

′) is of
dimension 4. A basis for this nullspace can be found by inspection, and is given by the columns of the matrix:

N =




03×3 C(ˆqR0 (k′))g
I3 −b ˆpR0 (k′)×cg

03×3 −b ˆvR0 (k′)×cg
03×3 C(ˆqR1 (k′))g
I3 −b ˆpR1 (k′)×cg

03×3 −b ˆvR1 (k′)×cg
...

...
03×3 C(ˆqRk′ (k

′))g
I3 −b ˆpRk′ (k

′)×cg
03×3 −b ˆvRk′ (k

′)×cg
I3 −b ˆpL1 (k′)×cg
I3 −b ˆpL2 (k′)×cg
...

...
I3 −b ˆpLn (k′)×cg




(92)

17

Similarly to the case of 2D motion, the first three columns of the above matrix correspond to shifting the position of all
the landmarks and all the robot positions by a constant amount (unobservable global position). The last column represents
rotations of all the states about an axis parallel to the gravity vector. The physical interpretation of this result is that using
only the robot-to-landmark measurements and IMU measurements, the relative positions between the robot poses and the
landmarks, the robot velocity, and the robot’s orientation relative to the horizontal plane can be estimated with bounded
uncertainty. On the other hand, the global position of all the robot states and landmarks, as well as the global orientation
about an axis parallel to the gravity vector cannot be determined.

3.3.3 Rank of Amar
full (k′)

To compute the rank of the matrix Amar
full (k′) in the case of 3D motion, the analysis proceeds analogously to the analysis

for the 2D case, presented in Section 3.2.3. Specifically, we can employ a decomposition of the matrix M(k, k′) as shown
in (70)-(75), and employ the following two results:

Lemma 8. The rank of the matrix K(k, k′) for 3D motion tracking with an IMU is 3n + 6, where n is the number of
landmarks.

Proof. See Appendix C.4.

Lemma 9. When the robot-to-landmark measurements are relative position meaurements, or camera measurements, and
for general motion,

dim(N (D(k, k′))
⋂
R(K(k, k′))) = 0 (93)

Proof. See Appendix C.5.

Using the above two results, in conjunction with (76), we conclude that the robot-to-landmark measurements are
camera measurements, we have:

rank(M(k, k′)) = rank(K(k, k′))︸ ︷︷ ︸
3n+6

− dim(N (D(k, k′))
⋂
R(K(k, k′)))

︸ ︷︷ ︸
0

= 3n + 6 (94)

Finally, employing (45), with dr = 9, we get:

rank(Amar
full (k′)) = 9k′ + 3n + 6 = rank(Anm

full(k
′)) + 1 (95)

This is the main result for the case of 3D motion: it shows that when the Jacobians are estimated using two different
state estimates for the same variables, the rank of resulting information matrix for the entire history of states is increased.
Moreover, since the size of the matrix Amar

full (k′) is (9k′+3n+9)× (9k′+3n+9), we see that the nullspace of the matrix
is of dimension three. By inspection, we can see that the first three vectors of the matrix N in (92) provide a basis for this
nullspace. This means that the estimator acquires erroneous information about the global orientation, the same conclusion
as the one we arrive at in Section 3.2.3. Again, we emphasize that such increase in rank is incorrect since it is not justified
by any new measurement information.

3.4 Impact on the estimator’s consistency
The results of (79) and (95) show that the rank of the information matrix for the entire state history, Amar

full (k′), is incorrectly
increased as a result of the use of two different estimates of some variables in computing Jacobians. Using (31) and the
properties of the Schur complement, we can find a direct relationship between the rank of the information matrix for the
entire state history and the information matrix for the currently active states, A(k′):

rank(A(k′)) = rank(Amar
full (k′))− rank(Amm(k)) (96)

Since Amm(k) is in general a full-rank matrix, we conclude that the rank of the information matrix for the active states at
time step k′ is increased compared to its correct value, as a result of the marginalization process.

We have thus shown that when no prior estimates are available, the marginalization process results in an erroneous
increase in the rank of the state information matrix. Analogous conclusions can be drawn for the general situation, where
prior information also exists. Specifically, in this case the rank of the information matrix is not increased (the matrix is
already full-rank), but the “addition” of information in certain directions of the state space still happens. The immediate
result of this is inconsistent estimates, i.e., estimates whose accuracy is worse than that claimed by the filter. Ultimately,
this leads to a degradation of the accuracy of the state estimates themselves, as shown in the results presented in Section 4.

18

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

20

40

60

80

100

120

140

160

180

200

Time (sec)

N
E

E
S

PL−Smoothing
Smoothing
MAP

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30
Rms errors

 x
 (

m
)

PL−Smoothing
Smoothing
MAP

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

 y
 (

m
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

φ
(d

eg
)

Time (sec)

(b)

Figure 2: Simulation results for 2D localization using odometry and bearing measurements to features. (a) The average
value of the robot-pose NEES over time. (b) The RMS errors for the robot pose over time. In both cases, averaging occurs
over all the Monte-Carlo trials. In these plots, the red solid lines correspond to the PL-smoothing algorithm, the black
dashed lines to the standard-linearization smoother, while the circles to the full MAP estimator.

3.5 Improvement of the estimator’s consistency
We now propose a simple solution to the problem of “creating” artificial information through the marginalization process.
For this purpose, only a slight modification of the fixed-lag smoothing algorithm is needed. Specifically, in computing
the Jacobians used in (28), we employ the prior estimates, rather than the current ones, for states for which a prior exists.
Thus, (28) is changed to:

A(`) = Λp
k + Λh

Sa(k′)(x̂r(k),x(`)
n) + Λf

m:k′(x̂r(k),x(`)
n)

In the above the only estimate of xr used is x̂r(k). As shown above, the rank of the matrix Amar
full (k′) does not increase

when marginalization takes place (the nullspace of this matrix is then spanned by the columns of N(x̂m(k), x̂r(k), x̂n(k′)),
and the influx of invalid information is avoided.

We term algorithm resulting from the above modification Prior-Linearization (PL) fixed-lag smoothing. It is important
to note that, as illustrated in Fig. 1, the number of variables for which the marginalization process creates prior information
is typically small. As a result, typically only a small number of states will be affected by the change of linearization point,
and therefore any loss of linearization accuracy (due to the use of older estimates for computing the Jacobians in (28))
is small. As indicated by the results presented in the next section, the effect of this loss of linearization accuracy is not
significant, while avoiding the creation of fictitious information leads to significantly improved estimation precision.

4 Results
In this section, we present simulation and real-world experimental results that demonstrate the properties of the proposed
PL-smoothing algorithm.

4.1 Simulation results: 2D localization
In our simulation setup, we consider the case of a robot that moves on a plane along a circular trajectory of total length of
approximately 1200 m. The robot tracks its pose using odometry and bearing measurements to landmarks that lie within
its sensing range of 4 m. This scenario could arise, for example, in the case of a robot that moves inside corridors and
tracks its position using camera observations of vertical edges on the walls. On average, approximately 15 landmarks
are visible at any time, and measurements occur at a rate of 1 Hz in the simulation setup. Landmarks can be tracked

19

−1600 −1400 −1200 −1000 −800 −600 −400 −200 0 200 400

−800

−600

−400

−200

0

200

400

600

x (m)

y
(m

)

EKF estimate
PL−smoothing estimate
GPS measurements

(a)

0 500 1000 1500
0

0.05

0.1

IMU Attitude σ (deg)

δ
θ x

EKF
 PL−Smoothing
Smoothing

0 500 1000 1500
0

0.05

0.1

δ
θ y

0 500 1000 1500
0

0.2

0.4

0.6

δ
θ z

Time (sec)

(b)

Figure 3: Real-world results for 3D localization using inertial measurements and a monocular camera. (a) The trajectory
estimates vs. GPS ground truth. (b) The reported standard deviation for the 3 axes of rotation.

for a maximum of 20 consecutive time steps, and therefore in the fixed-lag smoother we choose to maintain a sliding
window which contains 25 robot poses and the landmarks seen in these poses. In Fig. 2 the results of the PL-smoothing
algorithm are presented, and compared with those obtained by (i) the fixed-lag smoothing algorithm that utilizes the
standard linearization approach (termed SL-smoother in the following), and (ii) the full-state MAP estimator.

Specifically, Fig. 2(a) shows the average normalized estimation error squared (NEES) for the latest robot pose, av-
eraged over 50 Monte-Carlo runs, while Fig. 2(b) shows the RMS localization errors for each of the three robot states
[x, y, φ]. In these plots we observe that the PL-smoothing method significantly outperforms the SL-smoothing approach,
both in terms of consistency (i.e., NEES) and in terms of accuracy (i.e., RMS errors). Most importantly, we see that the
performance of the PL-smoother is almost indistinguishable from that of the full-MAP estimator, which at any time-step
carries out estimation using the entire history of states, and all measurements.

The average robot-pose NEES over all Monte-Carlo runs and all time steps equals 3.19 for the full-MAP, and 3.22 for
the PL-smoother. (Since in this case the robot state is of dimension 3, the “ideal” NEES value for a consistent estimator
equals 3). On the other hand, the average RMS errors for both estimators are identical to three significant digits, equal
to 1.38 m for position and 3.61o for orientation. This performance is remarkable, given the fact that the PL-smoother
has a computational cost orders of magnitude smaller than that of the full-MAP estimator. Moreover, it becomes clear
that the choice of linearization points has a profound effect on both the consistency and the accuracy of the estimates (for
comparison, the average NEES for the SL-smoother equals 44.5, while the average position and orientation RMS errors
are 1.82 m and 5.58o). We thus see that in the simulation setup shown here, the proposed PL-smoothing is capable of
attaining accuracy close to that of the “golden standard” full-state MAP estimator, while its computational cost is constant
over time and orders of magnitude smaller than that of the full-state MAP.

4.2 Real-world experiment: 3D localization
To validate the performance of the proposed algorithm in a real-world setting, we tested it on the data collected by a vehicle
moving on city streets. The experimental setup consisted of a camera registering images with resolution 640×480 pixels,
and an ISIS IMU, providing measurements of rotational velocity and linear acceleration at 100Hz. In this experiment the
vehicle drove for about 23 minutes, covering a distance of approximately 8.2 km. Images were processed at a rate of
7.5 Hz, and an average of about 800 features were tracked in each image. Features were extracted using the Harris corner
detector [21], and matched using normalized cross-correlation.

During the experiment all data were stored on a computer, and processing was carried out off-line, enabling us to test
the performance of several methods. Specifically, we compare the performance of the PL-smoother, the SL-smoother, and
an EKF-based fixed-lag smoothing method [7]. All three estimators process exactly the same data, and produce estimates

20

of the IMU’s 3D pose and velocity, as well as of the IMU’s biases. Due to the duration of the dataset, and the number of
detected features (approximately 3 million in total), it was impossible to run a full-state MAP estimator on this dataset.

In Fig. 3(a) the trajectory estimates of the PL-smoother and the EKF-smoother are shown in the solid and dashed
lines, respectively. Additionally the dots represent the GPS measurements, which were available intermittently to provide
ground truth (GPS was not processed in the estimator). Unfortunately, in this experiment the timestamps of the GPS
ground truth were not precise, and therefore it is impossible to compute the exact value of the error for each time instant.
However, by inspection of the trajectory estimates, we can deduce that the position errors of the EKF-smoother at the end
of the trajectory are approximately double those of the PL-smoother, and are equal to about 0.4% of the traveled distance.
The estimates of the SL-smoother are very close to those of the PL-smoother, and they are not shown to preserve the
clarity of the figure.

Figure 3(b) shows the time evolution of the reported standard deviation for the orientation estimate. The three subplots
correspond to the rotation errors about the x, y, and z axes, respectively, and the solid, dashed, and dash-dotted lines in
each plot correspond to the PL-smoother, the EKF-smoother, and the SL-smoother. We observe that, while the reported
accuracies for the rotation about the x and y axes (roll and pitch) are very similar among estimators, those for the rotation
about z (yaw) differ significantly. On one hand, the yaw uncertainty estimate of the EKF remains almost constant towards
the end of the trajectory, and sharply drops for the SL-smoother. On the other hand, the PL-smoother reports that the yaw
uncertainty continuously increases. Given the fact that the yaw is unobservable in this experiment, we clearly see that the
PL-smoother provides a better representation of the actual uncertainty of the state estimates.

5 Conclusions
In this report, we have presented an algorithm for tracking the motion of a robot using proprioceptive and exteroceptive
measurements. The method is based on a fixed-lag smoothing approximation to the full-MAP estimator. In order to attain
bounded computational cost over time, the proposed algorithm employs marginalization of older states, so as to maintain
a sliding window of active states with approximately constant size. Through an analysis of the marginalization equations,
we have proven that if the standard approach to linearization is used (i.e., if the latest estimates of the states are used for
computing Jacobians), the resulting estimator becomes inconsistent. Based on our analysis, we have proposed a modified
linearization scheme, termed PL-fixed lag smoothing, which ensures that no artificial information is introduced, and thus
helps prevent inconsistency. The proposed algorithm was tested in both simulation and real-world experiments, and its
performance was shown to be superior to that of alternative methods.

21

A Proof of Lemma 1
First, we note that since the matrix S in (35) and (38) is full-rank, we have:

rank
(
Anm

full(k
′)
)

= rank
(
W(k′)

)
(97)

rank
(
Amar

full (k′)
)

= rank
(
W(k, k′)

)
(98)

We will therefore focus on the rank of the matrices W(k′) and W(k, k′). Since the structure of these two matrices is the
same (shown in (40)), we will here drop the time indices, and provide a proof that applies to both W(k′) and W(k, k′).

To compute the rank of matrix W, we first apply a number of row and column operations to transform W into an
equivalent matrix with the same rank, but with structure that is more amenable to analysis. We will use the sign “∼” to
denote a transformation using row or column operations on the matrix. We have:

W =




−ΦR0 Idr . . . 0 0
...

.
...

...
0 . . . −ΦRk′−1

Idr 0
HR0 0 HL0

0
. . . 0

...
...

... 0
. . . 0

...
0 HRk′ HLk′




multiply the ith block row with −Φ−1
Ri

∼




Idr −Φ−1
R0

. . . 0 0
...

.
...

...
0 . . . Idr −Φ−1

Rk′−1
0

HR0 0 HL0

0
. . . 0

...
...

... 0
. . . 0

...
0 HRk′ HLk′




multiply the block column corresponding to the robot pose rk′ with (−ΦRk′−1
)

∼




Idr −Φ−1
R0

. . . 0 0
...

.
...

...
0 . . . Idr

−Idr
0

HR0 0 HL0

0
. . . 0

...
...

... 0
. . . 0

...
0 . . . 0 HRk′ΦRk′−1

HLk′




add the block column of rk′ to the block column of rk′−1

∼




Idr −Φ−1
R0

. . . 0 0
...

.
...

...
0 . . . 0 −Idr 0

HR0 0 HL0

0
. . . 0

...
...

... 0 HRk′−1
0

...
0 . . . HRk′ΦRk′−1

HRk′ΦRk′−1
HLk′




add the k′th block row multiplied by HRk′ΦRk′−1
to the last block row

22

∼




Idr
−Φ−1

R0
0 . . . 0 0

0 0
.

... 0
...

...
. . . −Idr

0
...

0 0 . . . 0 −Idr
0

HR0 0 0 HL0

0 HR1 0 . . . 0
...

...
...

.
... HLi

0
...

. . . HRk′−1
0

...

0
... . . . HRk′ΦRk′−1

0 HLk′




repeating for the next columns to the left

∼




0 −Idr
0 . . . 0 0

0 0
.

... 0
...

...
. . . −Idr 0

...
0 0 . . . 0 −Idr

0
HR0 0 0 HL0

HR1ΦR0 0 0 . . . 0
...

...
...

.
... HLi

HRk′−1
ΦRk′−2

. . .ΦR0 0
. . . 0 0

...
HRk′ΦRk′−1

. . .ΦR0 0 . . . 0 0 HLk′




=
[

0drk′×dr −Idrk′ 0
MR 0d`l×drk′ ML

]

∼
[−Idrk′ 0drk′×dr 0

0d`l×drk′ MR ML

]

=
[−Idrk′ 0

0d`l×drk′ M

]
(99)

where M = [MR ML] and MR,ML are the following matrices:

MR =




HR0

HR1ΦR0

...
HRk′−1

ΦRk′−2
. . .ΦR0

HRk′ΦRk′−1
. . .ΦR0




,ML =




HL0

...

...
HLk′




(100)

Based on the properties of partitioned matrices, we obtain from Eq. (99):

rank(W) = rank(Idrk′) + rank(M) = k′dr + rank(M) (101)

Using the above result, as well as that of (97)-(98), we obtain the results of the Lemma.

23

B Proofs for the case of 2D motion

B.1 Proof of Lemma 2
All the Jacobian matrices that appear in the matrix K(k′) are estimated using the state estimates at time-step k′. Therefore,
to simplify the notation, we drop the index (k′) from all equations. Using Eq. (52), we obtain:

ΦRi+1ΦRi =
[

I2 J(p̂Ri+2 − p̂Ri
)

01×2 1

]
(102)

and by induction, it is straightforward to show that for l > 0:

ΦRl−1ΦRl−2 . . .ΦR0 =
[

I2 J(p̂Rl
− p̂R0)

01×2 1

]
(103)

For the i-th block of the matrix KR, we have:

H′
Ri

ΦRi−1 . . .ΦR0 = H′
Ri

[
I2 J(p̂Ri

− p̂R0)
01×2 1

]
(104)

=




−I2 −J(p̂Lj1
− p̂Ri)

−I2 −J(p̂Lj2
− p̂Ri)

...
−I2 −J(p̂Ljli

− p̂Ri)




[
I2 J(p̂Ri

− p̂R0)
01×2 1

]
(105)

=




−I2 −J(p̂Lj1
− p̂R0)

−I2 −J(p̂Lj2
− p̂R0)

...
−I2 −J(p̂Ljli

− p̂R0)


 (106)

Substituting into the matrix KR, we obtain:

KR =




H′
R0

H′
R1

ΦR0

...
H′

Rk′−1
ΦRk′−2

. . .ΦR0

H′
Rk′

ΦRk′−1
. . .ΦR0




=




−I2 −J(p̂L1 − p̂R0)
...

...
−I2 −J(p̂Lj − p̂R0)

...
...

−I2 −J(p̂Ln − p̂R0)




(107)

Then, the matrix K becomes:

K =
[
KR KL

]

=




−I2 −J(p̂L1 − p̂R0) I2 0 0
...

...
...

...
...

...
...

−I2 −J(p̂Lj − p̂R0) 0 . . . I2 . . . 0
...

...
...

...
...

...
...

−I2 −J(p̂Ln − p̂R0) 0 I2




Add the first block column multiplied by Jp̂R0 to the second block column

∼




−I2 −Jp̂L1 I2 0 0
...

...
...

...
...

...
...

−I2 −Jp̂Lj 0 . . . I2 . . . 0
...

...
...

...
...

...
...

−I2 −Jp̂Ln 0 I2




24

Add the block column for lj multiplied by Jp̂Lj to the second block column, for all j = 1, . . . n

∼




−I2 0 I2 0 0
...

...
...

...
...

...
...

−I2 0 0 . . . I2 . . . 0
...

...
...

...
...

...
...

−I2 0 0 I2




Add the block column for lj to the first block column, for all j = 1, . . . n

∼




0 0 I2 0 0
...

...
...

...
...

...
...

0 0 0 . . . I2 . . . 0
...

...
...

...
...

...
...

0 0 0 I2




=
[
02l×3 KL

]
(108)

From the above result, we conclude that the rank of the matrix K is equal to the rank of KL. Note that the matrix KL

has one block row for each of the available measurements zij , and each row all zeros except for an identity matrix at the
position corresponding to landmark j. Therefore, we can show that the only solution to KLa = 0 is a = 0, which shows
that the matrix KL is full column rank. Therefore,

rank(K) = rank(KL) = 2n (109)

and the range of the matrix K is spanned by the columns of KL:

R(K) = R(KL) (110)

B.2 Proof of Lemma 3
Using the result of (110) we can write:

N (D)
⋂
R(K) = ∅ ⇔ N (D)

⋂
R(KL) = ∅ ⇔ DKLa = 0 only when a = 0 (111)

Let us define the following partitioning of a:

a =




a1

...

...
an




(112)

where each of the aj is a 2× 1 vector. With this notation, and using (63) and (64), we obtain:

DKLa = 0

⇔ MLa = 0

⇔ HLijaj = 0, ∀(i, j) ∈ S

which shows that to prove the lemma, we should prove

HLijaj = 0, ∀(i, j) ∈ S ⇔ aj = 0, ∀j = 1, . . . , n (113)

We now distinguish 3 cases of interest:

25

1) Relative position measurements: The relative position measurements are described by the following measure-
ment function:

h(∆pij) = ∆pij (114)

where ∆pij is the relative robot-landmark position. For this case we obtain ∇hij = I2, and thus

HLij = CT (φ̂Ri) (115)

Therefore, the condition HLijaj = 0, ∀(i, j) ∈ S implies that

CT (φ̂Ri
)aj = 0, for j = 1 . . . n,

⇒ aj = 0 for j = 1 . . . n

Which is the desired result.

2) Relative range measurements: The relative range measurements are described by the following measurement
function:

h(∆pij) = h
([

∆pij
1

∆pij
2

])
=

√
(∆pij

1)2 + (∆pij
2)2 (116)

where ∆pij is the relative robot-landmark position. The Jacobian of h with respect to ∆pij is:

∇hij =
[

∆pij
1√

(∆pij
1)2+(∆pij

2)2

∆pij
2√

(∆pij
1)2+(∆pij

2)2

]

=
[

∆pij
1

dij

∆pij
2

dij

]

=
1

dij
(∆pij)T (117)

where dij =
√

(∆pij
1)2 + (∆pij

2)2. Using the definition of ∆pij , ∆pij = CT (φ̂Ri)(p̂Lj − p̂Ri), we obtain:

∇hij = 1
dij

(p̂Lj − p̂Ri)
T C(φ̂Ri)

⇒ ∇hijCT (φ̂Ri) = 1
dij

(p̂Lj − p̂Ri)
T C(φ̂Ri)C

T (φ̂Ri)
⇒ HLij = 1

dij
(p̂Lj − p̂Ri)

T

(118)

Therefore, the condition HLijaj = 0, ∀(i, j) ∈ S is equivalent to:

(p̂Lj − p̂Ri)
T aj = 0 ∀(i, j) ∈ S

⇔ aj = 0 or aj ⊥ (p̂Lj − p̂Ri) ∀(i, j) ∈ S (119)

Each landmark lj is generally observed from more than one robot position. Therefore, for each aj there exist more
than one vectors (p̂Lj − p̂Ri) that should satisfy the condition aj = 0 or aj ⊥ (p̂Lj − p̂Ri). Since the robot positions
pRi are different in general, and since (p̂Lj − p̂Ri) are 2-D vectors, the only way for the conditions aj ⊥ (p̂Lj − p̂Ri) to
be satisfied simultaneously is if all (p̂Lj − p̂Ri) are parallel, ie., if the robot moves on a straight line towards the landmark.
Therefore, barring this degenerate case, the only solution to the condition HLijaj = 0 is aj = 0, ∀j, which is the desired
result.

3) Relative bearing measurements: The relative bearing measurements are described by the following measure-
ment function:

h(∆pij) = h
([

∆pij
1

∆pij
2

])
= arctan

(
∆pij

2

∆pij
1

)
(120)

26

and the Jacobian of h with respect to ∆pij is:

∇hij =
[−∆pij

2

(∆pij
1)2+(∆pij

2)2
∆pij

1

(∆pij
1)2+(∆pij

2)2

]

=
[−∆pij

2
d2

ij

∆pij
1

d2
ij

]

=
1

d2
ij

(J∆pij)T (121)

where J =
[
0 −1
1 0

]
. Using ∆pij = CT (φ̂Ri)(p̂Lj − p̂Ri) and the fact that C(φ̂Ri)J

T = JT C(φ̂Ri), we have:

∇hij = 1
d2

ij
(p̂Lj

− p̂Ri
)T C(φ̂Ri

)JT

⇒ ∇hijCT (φ̂Ri) = 1
d2

ij
(p̂Lj

− p̂Ri
)T JT C(φ̂Ri

)CT (φ̂Ri
)

⇒ HLij = 1
d2

ij
(p̂Lj

− p̂Ri
)T JT

(122)

Therefore, the condition HLij
aj = 0, ∀(i, j) ∈ S is equivalent to:

1
d2

ij

(p̂Lj − p̂Ri)
T JT aj = 0 ∀(i, j) ∈ S

⇔ (p̂Lj − p̂Ri)
T cj = 0 ∀(i, j) ∈ S

⇔ cj = 0 or cj ⊥(p̂Lj − p̂Ri) ∀(i, j) ∈ S (123)

where cj = JT aj , j = 1 . . . n. Note that the above condition for cj is identical to the condition derived for aj in the case
of relative range measurements. Therefore, by the same argument, we conclude that barring the degenerate case where
the robot moves on a straight line towards the landmark, we must have cj = 0, which directly implies that aj = 0, given
that J is an invertible matrix.

Conclusion: In summary, we conclude that when the robot-to-landmark measurements are relative positions, relative
ranges, or relative bearings:

N (D)
⋂
R(K) = ∅ ⇒ dim(N (D)

⋂
R(K)) = 0 (124)

B.3 Proof of Lemma 4
For the proof of this result we will follow a course similar to that of Appendix B.1. First, we note that all state transition
matrices ΦRi , for i = 0 . . . m − 1 are evaluated using the state estimates available at time-step k, while those for i ≥ m
are evaluated using the state estimates at time-step k′. Therefore, while we can write expressions analogous to (102) for
i < m− 1 and i > m− 1, for i = m− 1 we obtain:

ΦRm (k′)ΦRm−1 (k) =
[

I2 J(p̂Rm+1 (k′)− p̂Rm−1 (k)−∆pm)
0 1

]
(125)

where ∆pm = p̂Rm (k′)− p̂Rm (k). Using this result, we can show that

ΦRl−1ΦRl−2 . . .ΦR0 =
[

I2 J(p̂Rl
(k)− p̂R0 (k))

01×2 1

]
, l ≤ m

ΦRl−1ΦRl−2 . . .ΦR0 =
[

I2 J(p̂Rl
(k′)− p̂R0 (k)−∆pm)

01×2 1

]
, l > m (126)

27

Substituting into the matrix KR(k, k′), we obtain:

KR(k, k′) =




H′
R0

(k)

H′
R1

(k)ΦR0 (k)

...
H′

Rm−1
(k)ΦRm−2 (k) . . .ΦR0 (k)

H′
Rm

(k′)ΦRm−1 (k) . . .ΦR0 (k)

H′
Rm+1

(k′)ΦRm
(k′) . . .ΦR0 (k)

...
H′

Rk′−1
(k′)ΦRk′−2

(k′) . . .ΦR0 (k)

H′
Rk′

(k′)ΦRk−1 (k′) . . .ΦR0 (k)




=




−I2 −J(p̂L1 (k)− p̂R0 (k))
...

...
...

...
−I2 −J(p̂La (k)− p̂R0 (k))
−I2 −J(p̂La

(k′)− p̂R0 (k)−∆pm)
...

...
...

...
−I2 −J(p̂Ln

(k′)− p̂R0 (k)−∆pm)




(127)

where the landmark la is one seen both from a marginalized robot pose, and from a robot pose that remained active after
the marginalization. Substituting in the matrix K(k, k′), we obtain:

K(k, k′) =
[
KR(k, k′) KL

]

=




−I2 −J(p̂L1 (k)− p̂R0 (k)) I2 02×2 02×2

...
...

...
...

...
...

...
−I2 −J(p̂La (k)− p̂R0 (k)) 02×2 . . . I2 . . . 02×2

−I2 −J(p̂La (k′)− p̂R0 (k)−∆pm) 02×2 . . . I2 . . . 02×2

...
...

...
...

...
...

...
−I2 −J(p̂Ln (k′)− p̂R0 (k)−∆pm) 02×2 I2




Add the first block column multiplied by Jp̂R0 (k) to the second block column

∼




−I2 −J(p̂L1 (k)) I2 02×2 02×2

...
...

...
...

...
...

...
−I2 −J(p̂La (k)) 02×2 . . . I2 . . . 02×2

−I2 −J(p̂La (k′)−∆pm) 02×2 . . . I2 . . . 02×2

...
...

...
...

...
...

...
−I2 −J(p̂Ln (k′)−∆pm) 02×2 I2




Add the block column for lj to the first block column, for all j = 1, . . . n

∼




02×2 −J(p̂L1 (k)) I2 02×2 02×2

...
...

...
...

...
...

...
02×2 −J(p̂La (k)) 0 . . . I2 . . . 02×2

02×2 −J(p̂La (k′)−∆pm) 02×2 . . . I2 . . . 02×2

...
...

...
...

...
...

...
02×2 −J(p̂Ln (k′)−∆pm) 02×2 I2




∼




02×2 02×1 I2 02×2 02×2

...
...

...
...

...
...

...
02×2 J

(
p̂La (k′)− p̂La (k)−∆pm

)
02×2 . . . I2 . . . 02×2

02×2 02×1 02×2 . . . I2 . . . 02×2

...
...

...
...

...
...

...
02×2 02×1 02×2 I2




=
[
02l×2 kφ | KL

]
(128)

where kφ denotes the third column of the above matrix. The last equivalence relationship is obtained by the following col-
umn operations: we multiply the block columns corresponding those landmarks lj that are seen only by the marginalized
robot poses, each by Jp̂Lj (k), and add to the second block column. Then, we multiply the block columns corresponding

28

to all other landmarks lj , each by J
(
p̂Lj (k′)−∆pm

)
, and add to the second block column. Thus, for those landmarks

that are seen by the marginalized robot poses only or the remaining robot poses only, the first block column is reduced to
02×1. The non-zero block rows correspond to those measurements between marginalized robot poses and landmarks that
are seen by both marginalized robot poses and non-marginalized robot poses.

From the above equivalence relations, we conclude that

rank(K(k, k′)) = rank
([

kφ KL

])

To evaluate the rank of the 2l × (2n + 1) matrix
[
kφ KL

]
, we will compute all vectors a such that

[
kφ KL

]
a = 0.

Since
[
kφ KL

]
has 2n + 1 columns, we introduce the following partitioning for the vector a:

a =




aφ

a1

a2

...
an




(129)

where aφ is a scalar, and aj , j = 1 . . . n are 2 × 1 vectors. Based on this partitioning, the product
[
kφ KL

]
a can be

written as:



02×1 I2 02×2 02×2

...
...

...
...

...
...

J
(
p̂La (k′)− p̂La (k)−∆pm

)
02×2 . . . I2 . . . 02×2

02×1 02×2 . . . I2 . . . 02×2

...
...

...
...

...
...

02×1 02×2 I2







aφ

a1

a2

...
an




=




a1

...
J
(
p̂La (k′)− p̂La (k)−∆pm

)
aφ + aa

aa

...
an




We therefore see that for the condition
[
kφ KL

]
a = 0 to hold, all the vectors aj corresponding to landmarks that are

observed only from marginalized robot poses, as well as landmarks observed by any non-marginalized robot poses (and
possibly also from marginalized ones), must equal zero. Clearly, this means that all the vectors aj , j = 1 . . . n must equal
zero. Thus the only remaining variable to determine is aφ. Using aj = 0, j = 1 . . . n, the condition

[
kφ KL

]
a = 0

results in the equation:

J
(
p̂La (k′)− p̂La (k)−∆pm

)
aφ = 02×1 (130)

Since in general the term p̂La (k′) − p̂La (k) −∆pm is different than zero (i.e., in general the correction in the landmark
position is different than the correction in the position of the robot at time-step m), the above condition can only be
satisfied for aφ = 0.

We have thus shown that the condition
[
kφ KL

]
a = 0 is satisfied only if a = 0. This proves that

[
kφ KL

]
is full column rank, i.e., rank(

[
kφ KL

]
) = 2n + 1. Since rank(K(k, k′)) = rank(

[
kφ KL

]
), we conclude that

rank(K(k, k′)) = 2n + 1, which is the desired result.

B.4 Proof of Lemma 5
In Appendix B.3, we proved that the matrix K(k, k′) has the same rank as the full-column-rank matrix

[
kφ KL

]
. There-

fore, the range of K(k, k′) is spanned by the columns of
[
kφ KL

]
. Therefore, we can write:

N (D(k, k′))
⋂
R(K(k, k′)) = ∅

⇔ N (D(k, k′))
⋂
R([kφ KL]) = ∅

⇔ D(k, k′)[kφ KL]a = 0 only when a = 0 (131)

We now examine 3 cases of interest:

29

1) Relative position measurements: When the robot-to-landmark measurements are relative-position measure-
ments, then the matrix D(k, k′) is invertible, since it is a block diagonal matrix containing rotation matrices in its diagonal
(see (71) and (115)). Therefore, we have

D(k, k′)[kφ KL]a = 0 ⇔ [kφ KL]a = 0 ⇔ a = 0 (132)

where the last equivalence comes from the fact that the the matrix [kφ KL] is full column rank, as shown in Appendix B.3.

2) Relative range measurements: Using the expression for the Jacobian of the relative-range measurements in (117),
as well as a partitioning for the vector a as in (129), we obtain:

D(k, k′)[kφ KL]a = D(k, k′)




02×1 I2 02×2 02×2

...
...

...
...

...
...

J
(
p̂La

(k′)− p̂La
(k)−∆pm

)
02×2 . . . I2 . . . 02×2

02×1 02×2 . . . I2 . . . 02×2

...
...

...
...

...
...

02×1 02×2 I2







aφ

a1

a2

...
an




(133)

= D(k, k′)




a1

...
J
(
p̂La (k′)− p̂La (k)−∆pm

)
aφ + aa

aa

...
an




=




1
d11

(p̂L1 (k)− p̂R1 (k))T a1

...
1

d(m−1)a

(
p̂La (k)− p̂Rm−1 (k)

)T (
J
(
p̂La (k′)− p̂La (k)−∆pm

)
aφ + aa

)
1

d(m−1)a

(
p̂La (k′)− p̂Rm−1 (k′)

)T
aa

...
1

dk′n

(
p̂Ln (k′)− p̂Rk′ (k

′)
)T

an




(134)

Therefore, the condition D(k, k′)[kφ KL]a = 0 is equivalent to the conditions:

(p̂L1 (k)− p̂R1 (k))T a1 = 0
...

(
p̂La (k)− p̂Rm−1 (k)

)T (
J
(
p̂La (k′)− p̂La (k)−∆pm

)
aφ + aa

)
= 0

(
p̂La (k′)− p̂Rm−1 (k′)

)T
aa = 0

...
(
p̂Ln (k′)− p̂Rk′ (k

′)
)T

an = 0

By following an argument similar to that in Appendix B.2, we can show that barring degenerate cases, the conditions(
p̂Lj (k)− p̂Ri (k)

)T
aj = 0 can be satisfied only if all the vectors aj , j = 1 . . . n are equal to zero. Given these, we

obtain the condition for aφ:
(
p̂La (k)− p̂Rm−1 (k)

)T
J
(
p̂La (k′)− p̂La (k)−∆pm

)
aφ = 0

Since in general the term
(
p̂La (k)− p̂Rm−1 (k)

)T
J
(
p̂La (k′) − p̂La (k) − ∆pm

)
is different than zero, we conclude that

aφ = 0.
We have thus shown that the condition D(k, k′)[kφ KL]a = 0 is satisfied only if a = 0, which is the desired result.

30

3) Relative bearing measurements: Using the expression for the Jacobian of the relative-bearing measurements
in (121), the vector a shown in (129), and following steps similar to the case of relative-range measurements above, we
can show that the condition D(k, k′)[kφ KL]a = 0 in this case is equivalent to the conditions:

(p̂L1 (k)− p̂R1 (k))T Ja1 = 0
...

(
p̂La (k)− p̂Rm−1 (k)

)T
J
(
J
(
p̂La (k′)− p̂La (k)−∆pm

)
aφ + aa

)
= 0

(
p̂La (k′)− p̂Rm−1 (k′)

)T
Jaa = 0

...
(
p̂Ln (k′)− p̂Rk′ (k

′)
)T

Jan = 0

By setting cj = Jaj , the above expressions become identical to those in the previous case of relative-range measurements.
Therefore, we can show that barring degenerate cases, the only possible solution is a = 0.

Conclusion: In summary, we conclude that when the robot-to-landmark measurements are relative positions, relative
ranges, or relative bearings:

N (D(k, k′))
⋂
R(K(k, k′)) = ∅ ⇒ dim(N (D(k, k′))

⋂
R(K(k, k′))) = 0 (135)

C Proofs for the case of 3D motion

C.1 Proof of Lemma 6
The proof of this result follows a course similar to the proof of Lemma 2 in the 2D motion case. Similarly to that case, all
quantities appearing in this proof are evaluated using the estimates at time step k′, and therefore we omit the time index
(k′), for notation simplicity.

Using the definition of the matrix ΦRi in. (82), we can show that:

ΦRi+1ΦRi =




Ri+2
Ri

R 0 0
−b(p̂Ri+2 − p̂Ri − v̂Ri(

i+2
i ∆t)− g

2 (i+2
i ∆t)2)×cCT (q̂Ri) I3

i+2
i ∆tI3

−b(v̂Ri+2 − v̂Ri − g(i+2
i ∆t))×cCT (q̂Ri) 0 I3


 (136)

and by induction, we can show that for l > 0:

ΦRl−1 . . .ΦR0 =




Rl

R0
R 0 0

−b(p̂Rl
− p̂R0 − v̂R0(

l
0∆t)− g

2 (l
0∆t)2)×cCT (q̂R0) I3

l
0∆tI3

−b(v̂Rl
− v̂R0 − g(l

0∆t))×cCT (q̂R0) 0 I3


 (137)

Using the above result, and the definition of the matrix H′
Ri

in (87), we obtain:

H′
Ri

ΦRi−1 . . .ΦR0 =




b(p̂Lj1
− p̂R0 − v̂R0(

i
0∆t)− g

2 (i
0∆t)2)×cCT (q̂R0) −I3 −i

0∆tI3

b(p̂Lj2
− p̂R0 − v̂R0(

i
0∆t)− g

2 (i
0∆t)2)×cCT (q̂R0) −I3 −i

0∆tI3

...
...

...
b(p̂Ljli

− p̂R0 − v̂R0(
i
0∆t)− g

2 (i
0∆t)2)×cCT (q̂R0) −I3 −i

0∆tI3


 (138)

Substituting into the matrix KR, we obtain:

KR =




H′
R0

H′
R1

ΦR0

...
H′

Rk′−1
ΦRk′−2

. . .ΦR0

H′
Rk′

ΦRk′−1
. . .ΦR0




31

=




b(p̂L1 − p̂R0 − v̂R0(
0
0∆t)− g

2 (00∆t)2)×cCT (q̂R0) −I3 −0
0∆tI3

...
...

...
b(p̂Lj

− p̂R0 − v̂R0(
i
0∆t)− g

2 (i
0∆t)2)×cCT (q̂R0) −I3 −i

0∆tI3

...
...

...
b(p̂LN − p̂R0 − v̂R0(

k′
0 ∆t)− g

2 (k′
0 ∆t)2)×cCT (q̂R0) −I3 −k′

0 ∆tI3




(139)

Therefore the matrix K is equal to:

K =




b(p̂L1 − p̂R0 − v̂R0(
0
0∆t)− g

2 (00∆t)2)×cCT (q̂R0) −I3 −0
0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
...

b(p̂Lj
− p̂R0 − v̂R0(

i
0∆t)− g

2 (i
0∆t)2)×cCT (q̂R0) −I3 −i

0∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
...

b(p̂LN
− p̂R0 − v̂R0(

k′
0 ∆t)− g

2 (k′
0 ∆t)2)×cCT (q̂R0) −I3 −k′

0 ∆tI3 03×3 I3




Add the block columns for lj multiplied by −bp̂Lj
×cCT (q̂R0) to the first block column, for all j = 1, . . . n

∼




b(−p̂R0 − v̂R0(
0
0∆t)− g

2 (00∆t)2)×cCT (q̂R0) −I3 −0
0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
...

b(−p̂R0 − v̂R0(
i
0∆t)− g

2 (i
0∆t)2)×cCT (q̂R0) −I3 −i

0∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
...

b(−p̂R0 − v̂R0(
k′
0 ∆t)− g

2 (k′
0 ∆t)2)×cCT (q̂R0) −I3 −k′

0 ∆tI3 03×3 I3




Add the second block column multiplied by −bp̂R0×cCT (q̂R0) to the first block column

∼




b(−v̂R0(
0
0∆t)− g

2 (00∆t)2)×cCT (q̂R0) −I3 −0
0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
...

b(−v̂R0(
i
0∆t)− g

2 (i
0∆t)2)×cCT (q̂R0) −I3 −i

0∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
...

b(−v̂R0(
k′
0 ∆t)− g

2 (k′
0 ∆t)2)×cCT (q̂R0) −I3 −k′

0 ∆tI3 03×3 I3




Add the third block column multiplied by −bv̂R0×cCT (q̂R0) to the first block column

∼




b(−g
2 (00∆t)2)×cCT (q̂R0) −I3 −0

0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
...

b(−g
2 (i

0∆t)2)×cCT (q̂R0) −I3 −i
0∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
...

b(−g
2 (k′

0 ∆t)2)×cCT (q̂R0) −I3 −k′
0 ∆tI3 03×3 I3




Add the block columns for lj to the second block column, for all j = 1, . . . n

∼




b(−g
2 (00∆t)2)×cCT (q̂R0) 03×3 −0

0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
...

b(−g
2 (i

0∆t)2)×cCT (q̂R0) 03×3 −i
0∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
...

b(−g
2 (k′

0 ∆t)2)×cCT (q̂R0) 03×3 −k′
0 ∆tI3 03×3 I3




Multiply the first block column by −2C(q̂R0)

∼




(00∆t)2bg×c 03×3 −0
0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
...

(i
0∆t)2bg×c 03×3 −i

0∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
...

(k′
0 ∆t)2bg×c 03×3 −k′

0 ∆tI3 03×3 I3




(140)

32

We now define the orthonormal vectors gp1 and gp2 that span the plane perpendicular to the gravity vector, g. These
vectors have the following properties:

||gp1 ||2 = ||gp2 ||2 = 1

gT
p1

gp2 = gT
p1

g = gT
p2

g = 0

g × gT
p1

= bg×cgT
p1

= −||g||2gp2

g × gT
p2

= bg×cgT
p2

= ||g||2gp1

Moreover, since the vectors gp1 , gp2 , and g are linearly independent, the matrix

F =
[

1
||g||2 gp2

−1
||g||2 gp1 g

]
(141)

is nonsingular, and has the property:

bg×cF =
[
gp1 gp2 03×1

]

Since the matrix F is nonsingular, we can multiply the first block column in (140) by F to obtain:

K ∼




(00∆t)2
[
gp1 gp2 03×1

]
03×3 −0

0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
...

(i
0∆t)2

[
gp1 gp2 03×1

]
03×3 −i

0∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
...

(k′
0 ∆t)2

[
gp1 gp2 03×1

]
03×3 −k′

0 ∆tI3 03×3 I3




Omit zero columns

∼




(00∆t)2G −0
0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
(i
0∆t)2G −i

0∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
(k′
0 ∆t)2G −k′

0 ∆tI3 03×3 I3




= Keq (142)

where G is a matrix with orthonormal columns:

G =
[
gp1 gp2

]

The matrix Keq in (142) has 3n + 5 columns, therefore its rank (and the rank of the matrix K) is at most 3n + 5. We now
show that if there exists at least one landmark that is observed at least 3 times, the rank of the matrix is exactly 3n + 5.
To this end, we’ll show that the condition Keqa = 0 is satisfied only when a = 0. We introduce the partitioning for the
vector a given by:

a =




aq

av

a1

a2

...
an




(143)

where aq is a 2 × 1 vector and av , ai, i = 1 . . . n are 3 × 1 vectors. With this notation, the condition Keqa = 0 is
equivalent to :

(i
0∆t)2Gaq + i

0∆tav + aj = 0, ∀(i, j) ∈ S (144)

If one landmark is seen at least three times, then for this landmark we obtain the equations:

(a
0∆t)2Gaq + a

0∆tav + aj∗ = 0

33

(b
0∆t)2Gaq + b

0∆tav + aj∗ = 0

(c
0∆t)2Gaq + c

0∆tav + aj∗ = 0

It can be easily verified that the only solution to these equations is aq = 02×1, av = aj∗ = 03×1. Therefore, if at least one
landmark is seen at least three times, both aq and av must equal zero, and in turn, from (144) we conclude that aj = 03×1,
for i = 1 . . . n. Thus the condition Keqa = 0 can only be satisfied when a = 0, and thus

rank(Keq) = rank(K) = 3n + 5

C.2 Proof of Lemma 7
Relative-position measurements When the robot-to-landmark measurements are direct measurements of the rela-

tive position of the landmark with respect to the robot, zij = ∆pij + nij , then the Jacobian ∇hij is simply the identity
matrix, and HLij

= C(qRi
). Therefore, the matrix D(k′) is a block diagonal matrix with rotation matrices as its diagonal

elements, and it is invertible. As a result, N (D(k′)) = ∅, which shows that

dim(N (D(k′))
⋂
R(K(k′))) = 0

which is the desired result.

Camera measurements In Appendix C.1, we showed that by applying elementary column operations on the matrix
K, we can obtain the matrix Keq which has 3n + 5 linearly independent columns. Therefore, the range of the matrix K
is the same as the range of the matrix Keq , and we can write:

N (D)
⋂
R(K) = ∅ ⇔ N (D)

⋂
R(Keq) = ∅ ⇔ DKeqa = 0 only when a = 0 (145)

To prove the above result, we need to examine the structure of the matrix D appearing in the above expression. When a
perspective camera is used for the robot-to-landmark measurements, then

h(∆pij) =




c∆pij
1

c∆pij
3

c∆pij
2

c∆pij
3


 with




c∆pij
1

c∆pij
2

c∆pij
3


 = c

bC




∆pij
1

∆pij
2

∆pij
3


 (146)

In the above expression, c∆pij = c
bC∆pij is the feature position expressed in the camera frame, and c

bC is the 3 × 3
rotation matrix between the IMU and camera frames (to keep the derivations simpler, we are assuming that the distance
between the camera and IMU frames is negligible, compared to the difference between the camera and feature, and can
thus be omitted). The Jacobian of h with respect to ∆pij is:

∇hij =
1

(c∆pij
3)2

[
c∆pij

3 0 −c∆pij
1

0 c∆pij
3 −c∆pij

2

]
c
bC (147)

and thus

HLij =
1

(c∆pij
3)2

[
c∆pij

3 0 −c∆pij
1

0 c∆pij
3 −c∆pij

2

]
c
bCC(q̂Ri)

Using the same partitioning for the vector a as in (143), we can write the condition DKeqa = 0 as:

Diag(HLij)




(00∆t)2G 0
0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
(i
0∆t)2G i

0∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
(k′
0 ∆t)2G k′

0 ∆tI3 03×3 I3







aq

av

a1

a2

...
an




= 0

⇔ HLij

(
(i
0∆t)2Gaq + i

0∆tav + aj

)
= 0, ∀(i, j) ∈ S

34

⇔
[

c∆pij
3 0 −c∆pij

1

0 c∆pij
3 −c∆pij

2

]
c
bCC(q̂Ri)

(
(i
0∆t)2Gaq + i

0∆tav + aj

)
= 0, ∀(i, j) ∈ S (148)

⇔ c
bCC(q̂Ri)

(
(i
0∆t)2Gaq + i

0∆tav + aj

)
= cij

c∆pij , ∀(i, j) ∈ S (149)

where cij are scalars. The last equivalence follows from the fact that the matrix
[

c∆pij
3 0 −c∆pij

1

0 c∆pij
3 −c∆pij

2

]
has a

nullspace of dimension one, spanned by the vector c∆pij . For the condition (148) to hold, the vector multiplied by
this matrix must lie in its nullspace, which leads to (149). Substituting c∆pij = c

bC∆pij = c
bCC(q̂Ri)

(
p̂Lj − p̂Ri

)
, we

obtain:

(i
0∆t)2Gaq + i

0∆tav + aj = cij

(
p̂Lj

− p̂Ri

)
, ∀(i, j) ∈ S (150)

Our goal is to examine whether the above conditions can be satisfied for any a different than zero. To interpret the above
condition, note that if the robot trajectory can be described by an equation of the form:

p̂Ri
= p̂R0 + i

0∆tv + (i
0∆t)2Gaconst (151)

then we can choose cij = 1, aj = p̂Lj
− p̂R0 , av = −v, and aq = −acosnt, and the condition (150) will be satisfied. In

other words, if the robot moves with a constant acceleration, and the acceleration vector is in the plane perpendicular to
gravity (the plane spanned by the columns of G), then the condition (150) will be satisfied for a 6= 0. However, if we do
not restrict the robot’s motion to have any special properties, then in general the condition (150) can only be satisfied for
a = 0. Specifically, we prove the following result:

Lemma 10. If at least two landmarks are observed from at least three different robot poses, and the robot’s acceleration
is not restricted to the horizontal plane, then Eq. (150) implies that a = 0.

Proof. See Appendix C.3.

Therefore, if during any point in the robot’s trajectory, the conditions of the above lemma are met (two landmarks are
observed from three different robot poses, and the robot’s trajectory is general), we conclude that DKeqa = 0 only when
a = 0, which is the desired result.

C.3 Proof of Lemma 10
For two landmarks and three robot poses, Eq. (150) yields the following system of equations:

a1 + 1
0∆tav + +1

0∆t2Gaq = c11(p̂L1 − p̂R1)

a1 + 2
0∆tav + +2

0∆t2Gaq = c21(p̂L1 − p̂R2)

a1 + 3
0∆tav + +3

0∆t2Gaq = c31(p̂L1 − p̂R3)

a2 + 1
0∆tav + +1

0∆t2Gaq = c12(p̂L2 − p̂R1)

a2 + 2
0∆tav + +2

0∆t2Gaq = c22(p̂L2 − p̂R2)

a2 + 3
0∆tav + +3

0∆t2Gaq = c32(p̂L2 − p̂R3)

Note that for simplicity we use the indices 1,2,3 for the three robot poses and 1,2 for the landmarks. This is only for
notational clarity, and does not imply that the robot poses are the first three ones, or that the landmarks are the first two
ones in the state vector. The above equations can be re-arranged as:

35




p11 03×1 03×1 03×1 03×1 03×1 I3 03×3
1
0∆t I3 G 1

0∆t
2

03×1 p12 03×1 03×1 03×1 03×1 03×3 I3
1
0∆t I3 G 1

0∆t
2

03×1 03×1 p21 03×1 03×1 03×1 I3 03×3
2
0∆t I3 G 2

0∆t
2

03×1 03×1 03×1 p22 03×1 03×1 03×3 I3
2
0∆t I3 G 2

0∆t
2

03×1 03×1 03×1 03×1 p31 03×1 I3 03×3
3
0∆t I3 G 3

0∆t
2

03×1 03×1 03×1 03×1 03×1 p32 03×3 I3
3
0∆t I3 G 3

0∆t
2




︸ ︷︷ ︸
Γ




c11

c12

c21

c22

c31

c32

a1

a2

av

aq




︸ ︷︷ ︸
y

= 0 (152)

where the vector y contains all the unknowns in the equations, and we have defined:

pij = p̂Ri
− p̂Lj

, i ∈ {1, 2, 3}, j ∈ {1, 2} (153)

We will identify the conditions under which the homogeneous equation Γy = 0 has a non-zero solution by analyzing the
rank of the 18× 17 matrix Γ. We perform the following elementary row and column operations on Γ:

Γ =




p11 03×1 03×1 03×1 03×1 03×1 I3 03×3
1
0∆t I3 G 1

0∆t
2

03×1 p12 03×1 03×1 03×1 03×1 03×3 I3
1
0∆t I3 G 1

0∆t
2

03×1 03×1 p21 03×1 03×1 03×1 I3 03×3
2
0∆t I3 G 2

0∆t
2

03×1 03×1 03×1 p22 03×1 03×1 03×3 I3
2
0∆t I3 G 2

0∆t
2

03×1 03×1 03×1 03×1 p31 03×1 I3 03×3
3
0∆t I3 G 3

0∆t
2

03×1 03×1 03×1 03×1 03×1 p32 03×3 I3
3
0∆t I3 G 3

0∆t
2




(154)

Add the block column for a1 to the block column for a2

∼




p11 03×1 03×1 03×1 03×1 03×1 I3 I3
1
0∆t I3 G 1

0∆t
2

03×1 p12 03×1 03×1 03×1 03×1 03×3 I3
1
0∆t I3 G 1

0∆t
2

03×1 03×1 p21 03×1 03×1 03×1 I3 I3
2
0∆t I3 G 2

0∆t
2

03×1 03×1 03×1 p22 03×1 03×1 03×3 I3
2
0∆t I3 G 2

0∆t
2

03×1 03×1 03×1 03×1 p31 03×1 I3 I3
3
0∆t I3 G 3

0∆t
2

03×1 03×1 03×1 03×1 03×1 p32 03×3 I3
3
0∆t I3 G 3

0∆t
2




(155)

Subtract the second block row from the first block row

∼




p11 −p12 03×1 03×1 03×1 03×1 I3 03×3 03×3 03×2

03×1 p12 03×1 03×1 03×1 03×1 03×3 I3
1
0∆t I3 G 1

0∆t
2

03×1 03×1 p21 03×1 03×1 03×1 I3 I3
2
0∆t I3 G 2

0∆t
2

03×1 03×1 03×1 p22 03×1 03×1 03×3 I3
2
0∆t I3 G 2

0∆t
2

03×1 03×1 03×1 03×1 p31 03×1 I3 I3
3
0∆t I3 G 3

0∆t
2

03×1 03×1 03×1 03×1 03×1 p32 03×3 I3
3
0∆t I3 G 3

0∆t
2




(156)

We now perform Gauss elimination for the first two block rows. We multiply the first block row with the matrix:

T12 =




pT
11

pT
12

(p11 × p12)T




and perform row operations as follows:

Γ1:2 =
[

p11 −p12 03×1 03×1 03×1 03×1 I3 03×3 03×3 03×2

03×1 p12 03×1 03×1 03×1 03×1 03×3 I3
1
0∆t I3 G 1

0∆t
2

]

36

Multiply the first block row by T12

∼




pT
11p11 −pT

11p12 0 0 0 0 pT
11 01×3 01×3 01×2

pT
12p11 −pT

12p12 0 0 0 0 pT
12 01×3 01×3 01×2

0 0 0 0 0 0 (p11 × p12)T 01×3 01×3 01×2

03×1 p12 03×1 03×1 03×1 03×1 03×3 I3
1
0∆t I3 G 1

0∆t
2




Add the first row multiplied by −pT
12p11

pT
11p11

to the second row, and define s1 = pT
12p12 − (pT

12p11)2

pT
11p11

∼




pT
11p11 −pT

11p12 0 0 0 0 pT
11 01×3 01×3 01×2

0 −s1 0 0 0 0 pT
12 − pT

11
pT

12p11

pT
11p11

01×3 01×3 01×2

0 0 0 0 0 0 (p11 × p12)T 01×3 01×3 01×2

03×1 p12 03×1 03×1 03×1 03×1 03×3 I3
1
0∆t I3 G 1

0∆t
2




Add the second row multiplied by
1
s1

p12 to the second block row (rows 3-6)

∼




pT
11p11 −pT

11p12 0 0 0 0 pT
11 01×3 01×3 01×2

0 −s1 0 0 0 0 pT
12 − pT

11
pT

12p11

pT
11p11

01×3 01×3 01×2

0 0 0 0 0 0 (p11 × p12)T 01×3 01×3 01×2

03×1 03×1 03×1 03×1 03×1 03×1
1
s1

p12(pT
12 − pT

11
pT

12p11

pT
11p11

) I3
1
0∆t I3 G 1

0∆t
2




∼




pT
11p11 −pT

11p12 0 0 0 0 pT
11 01×3 01×3 01×2

0 −s1 0 0 0 0 pT
12 − pT

11
pT

12p11

pT
11p11

01×3 01×3 01×2

0 0 0 0 0 0 (p11 × p12)T 01×3 01×3 01×2

03×1 03×1 03×1 03×1 03×1 03×1 F1 I3
1
0∆t I3 G 1

0∆t
2




where

F1 =
1
s1

p12

(
pT

12 − pT
11

pT
12p11

pT
11p11

)
=

1
s1

p12pT
12

(
I3 − p11pT

11

pT
11p11

)

Continuing similarly for the third-fourth and fifth-sixth block rows, after performing elimination and re-arranging the
rows, we obtain:

Γ ∼




pT
11p11 −pT

11p12 0 0 0 0 pT
11 01×3 01×3 01×2

0 −s1 0 0 0 0 pT
12 − pT

11
pT

12p11

pT
11p11

01×3 01×3 01×2

0 0 pT
21p21 −pT

21p22 0 0 pT
21 01×3 01×3 01×2

0 0 0 −s2 0 0 pT
22 − pT

21
pT

22p21

pT
21p21

01×3 01×3 01×2

0 0 0 0 pT
31p31 −pT

31p32 pT
31 01×3 01×3 01×2

0 0 0 0 0 −s3 pT
32 − pT

31
pT

32p31

pT
31p31

01×3 01×3 01×2

0 0 0 0 0 0 (p11 × p12)T 01×3 01×3 01×2

0 0 0 0 0 0 (p21 × p22)T 01×3 01×3 01×2

0 0 0 0 0 0 (p31 × p32)T 01×3 01×3 01×2

03×1 03×1 03×1 03×1 03×1 03×1 F1 I3
1
0∆t I3 G 1

0∆t
2

03×1 03×1 03×1 03×1 03×1 03×1 F3 I3
2
0∆t I3 G 2

0∆t
2

03×1 03×1 03×1 03×1 03×1 03×1 F2 I3
3
0∆t I3 G 3

0∆t
2




(157)

where

s2 = pT
22p22 − (pT

22p21)2

pT
21p21

, s3 = pT
32p32 − (pT

32p31)2

pT
31p31

(158)

37

F2 =
1
s2

p22pT
22

(
I3 − p21pT

21

pT
21p21

)
, F3 =

1
s3

p32pT
32

(
I3 − p31pT

31

pT
31p31

)
(159)

Note that in the above expressions we have divided by the terms si, i = 1, 2, 3. To prove that these terms are nonzero,
note that

si = 0 ⇔ pT
i2pi2 pT

i1pi1 − (pT
i2pi1)2 = 0 ⇔ ||pi2||22||pi1||22 − (pT

i2pi1)2 = 0 (160)

By the Cauchy-Schwartz inequality, we know that the above condition is met only when pi1 = cpi2, i.e., only when the
vectors pi1 and pi2 are parallel. This is not possible however, since in that case the two landmarks would be projected to
the same point on the camera.

From (157) we conclude that

rank(Γ) = 6 + rank(B) (161)

with

B =




(p11 × p12)T 01×3 01×3 01×2

(p21 × p22)T 01×3 01×3 01×2

(p31 × p32)T 01×3 01×3 01×2

F1 I3
1
0∆t I3 G 1

0∆t
2

F3 I3
2
0∆t I3 G 2

0∆t
2

F2 I3
3
0∆t I3 G 3

0∆t
2




(162)

Re-arranging the columns and rows of B, we can write:

B ∼




I3
1
0∆t I3 G 1

0∆t
2 F1

I3
2
0∆t I3 G 2

0∆t
2 F2

I3
3
0∆t I3 G 3

0∆t
2 F3

01×3 01×3 01×2 (p11 × p12)T

01×3 01×3 01×2 (p21 × p22)T

01×3 01×3 01×2 (p31 × p32)T




(163)

Subtract the first block row from the second and third block rows

∼




I3
1
0∆t I3 G 1

0∆t
2 F1

03×3 (2
0∆t − 1

0∆t)I3 (2
0∆t

2 − 1
0∆t

2)G F2 − F1

03×3 (3
0∆t − 1

0∆t)I3 (3
0∆t

2 − 1
0∆t

2)G F3 − F1

01×3 01×3 01×2 (p11 × p12)T

01×3 01×3 01×2 (p21 × p22)T

01×3 01×3 01×2 (p31 × p32)T




(164)

Divide the second and third block rows by (2
0∆t − 1

0∆t) and (3
0∆t − 1

0∆t), respectively

∼




I3
1
0∆t I3 G 1

0∆t
2 F1

03×3 I3 (2
0∆t + 1

0∆t)G 1
2
0∆t− 1

0∆t
(F2 − F1)

03×3 I3 (3
0∆t + 1

0∆t)G 1
3
0∆t− 1

0∆t
(F3 − F1)

01×3 01×3 01×2 (p11 × p12)T

01×3 01×3 01×2 (p21 × p22)T

01×3 01×3 01×2 (p31 × p32)T




(165)

Subtract the second block row from the third block row

∼




I3
1
0∆t I3 G 1

0∆t
2 F1

03×3 I3 (2
0∆t + 1

0∆t)G 1
2
0∆t− 1

0∆t
(F2 − F1)

03×3 03×3 (3
0∆t − 2

0∆t)G 1
3
0∆t− 1

0∆t
(F3 − F1)− 1

2
0∆t− 1

0∆t
(F2 − F1)

01×3 01×3 01×2 (p11 × p12)T

01×3 01×3 01×2 (p21 × p22)T

01×3 01×3 01×2 (p31 × p32)T




(166)

38

Pre-multiply the third block row with the matrix [G g]T

∼




I3
1
0∆t I3 G 1

0∆t
2 F1

03×3 I3 (2
0∆t + 1

0∆t)G 1
2
0∆t− 1

0∆t
(F2 − F1)

02×3 02×3 (3
0∆t − 2

0∆t)I2 B′

01×3 01×3 01×2
1

3
0∆t− 1

0∆t
gT (F3 − F1)− 1

2
0∆t− 1

0∆t
gT (F2 − F1)

01×3 01×3 01×2 (p11 × p12)T

01×3 01×3 01×2 (p21 × p22)T

01×3 01×3 01×2 (p31 × p32)T




(167)

where B′ is a 2 × 3 matrix whose value is not required in this derivation. The top-left submatrix above is full rank, and
therefore we can write

rank(B) = 8 + rank(Θ) (168)

where

Θ =




gT
(
(2

0∆t − 1
0∆t)(F3 − F1)− (3

0∆t − 1
0∆t)(F2 − F1)

)
(p11 × p12)T

(p21 × p22)T

(p31 × p32)T


 (169)

From (161) and (168) we conclude that the matrix Γ is full rank when rank(Θ) = 3. We will therefore examine the
conditions under which this is true.

Using Eq. (153) we see that, for i = {1, 2, 3}, it is:

pi1 × pi2 = (p̂Ri − p̂L1)× (p̂Ri − p̂L2)
= p̂L1 × p̂L2 + p̂Ri × (p̂L1 − p̂L2)

and using the fact that p̂L1 × p̂L2 ⊥ (p̂L1 − p̂L2) and p̂Ri × (p̂L1 − p̂L2) ⊥ (p̂L1 − p̂L2), we obtain

(pi1 × pi2)T (p̂L1 − p̂L2) = 0 (170)

Therefore, the vectors (p11 × p12), (p21 × p22), (p31 × p32) lie in a subspace of dimension two (this subspace is the
plane with normal vector (p̂L1 − p̂L2)). More precisely, we have proven that the vectors lie in a subspace of dimension at
most two. They will lie in a subspace of dimension one only when pi1 × pi2 = cid for some d, which means that all the
robot positions and all the landmarks are in the same plane. Unless this is the case, then the vectors (p11 × p12), (p21 ×
p22), (p31 × p32) span a subspace of dimension two. As a result,

rank







(p11 × p12)T

(p21 × p22)T

(p31 × p32)T





 = 2

and any vector w such that



(p11 × p12)T

(p21 × p22)T

(p31 × p32)T


w = 0

must lie in the nullspace of this matrix, which is of dimension one. Since the vector (p̂L1 − p̂L2) lies in this nullspace
(see (170)), we must have that w = c(p̂L1 − p̂L2) for some constant c.

We have thus shown that if there exists any vector such that Θw = 0, this vector can only be of the form w =
c(p̂L1 − p̂L2). For Θw = 0 to hold, from the first row of the matrix Θ we obtain the condition:

c = 0 or gT
(
(2

0∆t − 1
0∆t)(F3 − F1)− (3

0∆t − 1
0∆t)(F2 − F1)

)
(p̂L1 − p̂L2) = 0 (171)

We now note that

F1(p̂L1 − p̂L2) =
1
s1

p12pT
12

(
I3 − p11pT

11

pT
11p11

)
(p̂L1 − p̂L2)

39

=
1
s1

p12pT
12

(
I3 − p11pT

11

pT
11p11

)
(p12 − p11)

=
1
s1

p12pT
12


p12−p11 +

p11pT
11

pT
11p11

p11

︸ ︷︷ ︸
0

−p11pT
11

pT
11p11

p12




=
1
s1

p12

(
pT

12p12 − pT
12

p11pT
11

pT
11p11

p12

)

︸ ︷︷ ︸
s1

= p12 (172)

Similarly we obtain:

F2(p̂L1 − p̂L2) = p22

F3(p̂L1 − p̂L2) = p32

With these results, (171) becomes:

c = 0 or gT
(
(2

0∆t − 1
0∆t)(p32 − p12)− (3

0∆t − 1
0∆t)(p22 − p12)

)
= 0 (173)

the second condition above means that the vector (2
0∆t − 1

0∆t)(p32 − p12) − (3
0∆t − 1

0∆t)(p22 − p12) must be
perpendicular to g, i.e., that there exist scalars a1 and a2 such that

(2
0∆t − 1

0∆t) (p32 − p12)︸ ︷︷ ︸
p̂R3−p̂R1

−(3
0∆t − 1

0∆t) (p22 − p12)︸ ︷︷ ︸
p̂R2−p̂R1

= G
[

a1

a2

]

⇔ p̂R3 − p̂R1

3
0∆t − 1

0∆t
− p̂R2 − p̂R1

2
0∆t − 1

0∆t
= G

[
a1

a2

]
1

(2
0∆t − 1

0∆t)(3
0∆t − 1

0∆t)

⇔ p̂R3 − p̂R1

3
0∆t − 1

0∆t︸ ︷︷ ︸
v31

− p̂R2 − p̂R1

2
0∆t − 1

0∆t︸ ︷︷ ︸
v21

= G
[

a′1
a′2

]
(174)

The physical interpretation of the last condition is that the velocity change is perpendicular to g, which implies that the
robot’s acceleration lies in the horizontal plane. Thus, if this is not the case, then the last condition is not satisfied, and
c must equal zero, which in turn means that Θw = 0 is true only when w = 0, and rank(Θ) = 3. This completes the
proof.

C.4 Proof of Lemma 8
For the purposes of this proof, we follow a course analogous to that in Appendix C.1. Specifically, by steps similar to
those of Appendix C.1 we obtain

KR(k, k′) =




H′
R0

(k)

...
H′

Rm−1
(k)ΦRm−2 (k) . . .ΦR0 (k)

H′
Rm

(k′)ΦRm−1 (k) . . .ΦR0 (k)

...
H′

Rk′
(k′)ΦRk′−1

(k′) . . .ΦR0 (k)




(175)

40

=




b(p̂L1 (k)− p̂R0 (k)− v̂R0 (k)(00∆t)− g
2 (00∆t)2)×cCT (q̂R0 (k)) −I3 −0

0∆tI3

...
...

...
b(p̂La

(k)− p̂R0 (k)− v̂R0 (k)(m−1
0 ∆t)− g

2 (m−1
0 ∆t)2)×cCT (q̂R0 (k)) −I3 −m−1

0 ∆tI3(b(p̂La
(k′)− p̂R0 (k)− v̂R0 (k)(m

0 ∆t)− g
2 (m

0 ∆t)2)×c+ Vma

)
CT (q̂R0 (k)) −I3 −m

0 ∆tI3

...
...

...(
b(p̂Ln (k′)− p̂R0 (k)− v̂R0 (k)(k′

0 ∆t)− g
2 (k′

0 ∆t)2)×c+ Vk′n

)
CT (q̂R0 (k)) −I3 −k′

0 ∆tI3




(176)

where

Vij = bp̂Lj
(k′)×c (

I3 −CT (qRm
(k′))C(qRm

(k))
)− bp̂Rm

(k′)×cCT (qRm
(k′))C(qRm

(k)) + bp̂Rm
(k)×c︸ ︷︷ ︸

Ξj

+
i
m∆t2

2
bg×c (

I3 −CT (qRm
(k′))C(qRm

(k))
)

+ i
m∆t

(bv̂Rm
(k)×c − bv̂Rm

(k′)×cCT (qRm
(k′))C(qRm

(k))
)

︸ ︷︷ ︸
Λi

Similarly to Appendix B.3, we here consider the case where the landmark la is observed by both the marginalized state
rm−1, and the non-marginalized state rm. Substituting the above result in the matrix K(k, k′) = [KR(k, k′) KL], and
applying elementary column operations as in Appendix C.1, we obtain:

K(k, k′) ∼




b(p̂L1 (k)− g
2 (00∆t)2)×c 03×3

0
0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
...

b(p̂La (k)− g
2 (m−1

0 ∆t)2)×c 03×3
m−1
0 ∆tI3 03×3 . . . I3 . . . 03×3

b(p̂La (k′)− g
2 (m

0 ∆t)2)×c+ Vma 03×3
m
0 ∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
...

b(p̂Ln (k′)− g
2 (k′

0 ∆t)2)×c+ Vk′n 03×3
k′
0 ∆tI3 03×3 I3




Omit zero columns

∼




b(p̂L1 (k)− g
2 (00∆t)2)×c 0

0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
b(p̂La (k)− g

2 (m−1
0 ∆t)2)×c m−1

0 ∆tI3 03×3 . . . I3 . . . 03×3

b(p̂La (k′)− g
2 (m

0 ∆t)2)×c+ Vma
m
0 ∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
b(p̂Ln (k′)− g

2 (k′
0 ∆t)2)×c+ Vk′n

k′
0 ∆tI3 03×3 I3




∼




b−g
2 (00∆t)2×c 0

0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
b(p̂La (k)− p̂La (k′)− g

2 (m−1
0 ∆t)2)×c −Ξa

m−1
0 ∆tI3 03×3 . . . I3 . . . 03×3

b−g
2 (m

0 ∆t)2×c+ Λm
m
0 ∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
b−g

2 (k′
0 ∆t)2×c+ Λk′

k′
0 ∆tI3 03×3 I3




The last equivalence relationship is obtained by the following column operations: first, we multiply the block columns
corresponding those landmarks lj that are seen only by the marginalized robot poses, each by−b(p̂Lj (k)×c, and add to the
first block column. Then, we multiply the block columns corresponding to all other landmarks lj , each by−b(p̂Lj (k′)×c−
Ξj , and add to the first block column. If we next multiply the first block column of the above matrix by the matrix F

41

in (141), and define ∆pLa = p̂La (k)− p̂La (k′), we obtain:

K(k, k′) ∼




0
0∆t2

2

[
G 03×1

]
0
0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
a
0∆t2

2

[
G 03×1

]
+ b∆pLa×cF−ΞaF m−1

0 ∆tI3 03×3 . . . I3 . . . 03×3
a
0∆t2

2

[
G 03×1

]
+ ΛmF m

0 ∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
k′
0 ∆t2

2

[
G 03×1

]
+ Λk′F k′

0 ∆tI3 03×3 I3




∼




0
0∆t2

[
G 03×1

]
0
0∆tI3 I3 03×3 03×3

...
...

...
...

...
...

...
a
0∆t2

[
G 03×1

]
+ 2b∆pLa×cF− 2ΞaF m−1

0 ∆tI3 03×3 . . . I3 . . . 03×3
a
0∆t2

[
G 03×1

]
+ 2ΛmF m

0 ∆tI3 03×3 . . . I3 . . . 03×3

...
...

...
...

...
...

...
k′
0 ∆t2

[
G 03×1

]
+ 2Λk′F k′

0 ∆tI3 03×3 I3




= K′
eq

From our analysis in Appendix C.1 we know that all the columns in K′
eq after the third one are linearly independent (they

are columns of the matrix Keq in (142), which is full column rank). Moreover, due to the structure of the terms Ξj and
Λi that appear in the first block column, the three column vectors of this block cannot be written as a linear combination
of the remaining ones (a detailed proof is tedious but straightforward, and is omitted). Therefore, all the columns in the
above matrix are linearly independent, and therefore the rank of K(k, k′) is equal to the number of columns in K′

eq , or

rank(K(k, k′)) = 3n + 6

C.5 Proof of Lemma 9
Relative-position measurements As shown in Appendix C.2, when the robot-to-landmark measurements are direct

measurements of the relative position of the landmark with respect to the robot, the matrix D is a block diagonal matrix
with rotation matrices as its diagonal elements, and it is therefore invertible. As a result, N (D(k, k′)) = ∅, which shows
that

dim(N (D(k, k′))
⋂
R(K(k, k′))) = 0

which is the desired result.

Camera measurements As shown in Appendix C.4, the range of the matrix K(k, k′) is spanned by the columns of
the matrix K′

eq , which has full column rank. Therefore,

N (D(k, k′))
⋂
R(K(k, k′)) = ∅ ⇔ N (D(k, k′))

⋂
R(K′

eq) = ∅ ⇔ D(k, k′)K′
eqa = 0 only when a = 0 (177)

Let us define the following partitioning of a:

a =




aq

av

a1

...

...
an




(178)

where each of the a1, . . . ,an, aq , and av is a 3× 1 vector. Following the same steps as in the proof in Appendix C.2, we
conclude that the condition D(k, k′)K′

eqa = 0 is equivalent to the conditions:

i
0∆t2

[
G 03×1

]
aq + i

0∆tav + aj = cij(p̂Lj (k)− p̂Ri (k)), ∀(i, j) ∈ S ′m(
i
0∆t2

[
G 03×1

]− 2b∆pLa×cF− 2ΞaF
)
aq + i

0∆tav + aj = cij(p̂Lj (k)− p̂Ri (k)), ∀(i, j) ∈ S ′′m
42

(
i
0∆t2

[
G 03×1

]
+ 2ΛiF

)
aq + i

0∆tav + aj = cij(p̂Lj
(k′)− p̂Ri

(k′)), ∀(i, j) ∈ Sa

where S ′m denotes the set of indices (i, j), that correspond to measurements of landmarks observed only from marginal-
ized states, while S ′m denotes the set of indices (i, j), that correspond to measurements of landmarks observed both by
marginalized and non-marginalized states. Clearly, the above conditions are very similar to the conditions (150). Specifi-
cally, the first set of conditions (landmarks that are observed only in marginalized states), can be rewritten as:

i
0∆t2Gaq(1:2) + i

0∆tav + aj = cij(p̂Lj (k)− p̂Ri (k)), ∀(i, j) ∈ S ′m
where aq(1:2) is a vector containing the first two elements of aq . The above equation is identical to (150), and therefore,
using the result of Appendix C.2 we can prove that barring degenerate cases, aq(1:2) = 02×1, av = 02×1, and aj = 0 for
all landmarks in this set. Then the remaining conditions become:

(−2b∆pLa×c − 2Ξa)gaq3 + aj = cij(p̂Lj (k)− p̂Ri (k)), ∀(i, j) ∈ S ′′m
2Λigaq3 + aj = cij(p̂Lj

(k′)− p̂Ri
(k′)), ∀(i, j) ∈ Sa

where aq3 is the third element of the vector aq , and we used the definition of the matrix F in (141). If a landmark is seen
at least two times, from the second condition above we obtain:

2Λigaq3 + aj = cij(p̂Lj
(k′)− p̂Ri

(k′))
2Λi′gaq3 + aj = ci′j(p̂Lj (k′)− p̂R′i (k

′))
⇒ 2(Λi −Λi′)gaq3 = cij(p̂Lj

(k′)− p̂R′i (k
′))− ci′j(p̂Lj

(k′)− p̂R′i (k
′))

In general, the vectors (Λi −Λi′)g, (p̂Lj (k′)− p̂R′i (k
′)), and (p̂Lj (k′)− p̂R′i (k

′)) are linearly independent, and therefore
the above condition is only met when aq3 = cij = ci′j = 0. Therefore, we proved that aq = 03×1. Using this result,
we can now show that all aj j = 1 . . . n must equal zero. In conclusion, the condition D(k, k′)K′

eqa = 0 is satisfied only
when a = 0, which is the desired result.

References
[1] L. H. Matthies, “Dynamic stereo vision,” Ph.D. dissertation, School of Computer Science, Carnegie Mellon Univer-

sity, 1989.

[2] S. I. Roumeliotis, A. E. Johnson, and J. F. Montgomery, “Augmenting inertial navigation with image-based motion
estimation,” in Proceedings of the IEEE International Conference on Robotics and Automation, Washington D.C,
May 2002, pp. 4326–33.

[3] D. D. Diel, “Stochastic constraints for vision-aided inertial navigation,” Master’s thesis, Massachusetts Institute of
Technology, Jan. 2005.

[4] D. S. Bayard and P. B. Brugarolas, “On-board vision-based spacecraft estimation algorithm for small body explo-
ration,” IEEE Trans. on Aerospace and Electonic Systems, vol. 44, no. 1, pp. 443–460, 2008.

[5] A. Howard, “Real-time stereo visual odometry for autonomous ground vehicles,” in Proc. International Conference
on Intelligent Robots and Systems, Nice, France, Sept. 22-26 2008, pp. 3946–3952.

[6] P. S. Maybeck, Stochastic Models, Estimation and Control, ser. Mathematics in Science and Engineering. London:
Academic Press, 1982, vol. 141-2.

[7] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman filter for vision-aided inertial navigation,”
in Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, Apr. 2007, pp.
3565–3572.

[8] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry for ground vehicle applications,” Journal of Field
Robotics, vol. 23, no. 1, pp. 3–20, Jan. 2006.

[9] C. Engels, H. Stewenius, and D. Nister, “Bundle adjustment rules,” in Proceedings of the Photogrammetric Computer
Vision Conference, Bonn, Germany, Sep. 20-22 2006, pp. 266–271.

43

[10] K. Konolige, M. Agrawal, and J. Sola, “Large-scale visual odometry for rough terrain,” in Proceedings of the Inter-
national Symposium on Research in Robotics, Hiroshima, Japan, Nov. 26-29 2007.

[11] P. McLauchlan, “The variable state dimension filter applied to surface-based structure from motion,” School of
Electrical Engineering, Information Technology and Mathematics, University of Surrey, UK, Tech. Rep. VSSP-TR-
4/99, 1999.

[12] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Real time localization and 3D reconstruction,”
in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 17-22
2006, pp. 363– 370.

[13] B. Triggs, P. McLauchlan, R. Hartley, and Fitzgibbon, “Bundle adjustment – a modern synthesis,” in Vision Algo-
rithms: Theory and Practice. Springer Verlag, 2000, pp. 298–375.

[14] G. Sibley, G. S. Sukhatme, and L. Matthies, “Constant time sliding window filter SLAM as a basis for metric visual
perception,” in Workshop: From features to actions - Unifying perspectives in computational and robot vision, held
at ICRA 2007, April 2007.

[15] A. Ranganathan, M. Kaess, and F. Dellaert, “Fast 3D pose estimation with out-of-sequence measurements,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, Oct. 29
- Nov. 2 2007, pp. 2486–2493.

[16] Y. Bar-Shalom and X. Li, Estimation and Tracking: Principles, Techniques, and Software. Boston: Artech House,
1993.

[17] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Analysis and improvement of the consistency of extended
Kalman filter-based SLAM,” in Proceedings of the IEEE International Conference on Robotics and Automation,
Pasadena, CA, May 2008, pp. 473–479.

[18] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization and mapping via square root information
smoothing,” International Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203, Dec. 2006.

[19] C. Meyer, Matrix analysis and applied linear algebra: solutions manual. Society for Industrial and Applied
Mathematics, 2000.

[20] N. Trawny and S. Roumeliotis, “Indirect Kalman filter for 6D pose estimation,” University of Minnesota, Dept. of
Comp. Sci. & Eng., Tech. Rep, vol. 2, 2005.

[21] C. Harris and M. Stephens, “A combined corner and edge detector,” in Proceedings of the 4th Alvey Vision Confer-
ence, Manchester, UK, Aug. 31 - Sep. 2 1988, pp. 147–151.

44

