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Abstract

In this report, we perform a rigorous analysis of EKF-based visual-inertial odometry (VIO) and present a method for
improving its performance. Specifically, we examine the properties of EKF-based VIO, and show that the standard way
of computing Jacobians in the filter inevitably causes inconsistency and loss of accuracy. This result is derived based
on an observability analysis of the EKF’s linearized systemmodel, which proves that the yaw erroneously appears to
be observable. In order to address this problem, we propose modifications to the multi-state constraint Kalman filter
(MSCKF) algorithm [1], which ensure the correct observability properties without incurring additional computational
cost. Extensive simulation tests and real-world experiments demonstrate that the modified MSCKF algorithm outperforms
competing methods, both in terms of consistencyandaccuracy.
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1 Introduction

In this work, we focus on the problem of tracking a vehicle’s egomotion using a camera and an inertial measurement unit
(IMU). Cameras are small and lightweight sensors, that provide very rich information about the environment. However,
if only visual measurements are used for motion estimation, the resulting algorithms often lack robustness, due to the
challenging nature of the estimation problem. Employing anIMU as an additional sensor can dramatically improve both
the reliability and the accuracy of motion tracking, as demonstrated in recent work on vision-aided inertial navigation [1–
4].

Our focus is on the task of estimating the pose of a vehicle moving in an unknown environment. Therefore, we do
not assume that a feature map is available in advance, as in map-based localization methods (e.g., [3, 5]). Moreover, we
do not aim at building such a map, as in simultaneous localization and mapping (SLAM) methods (e.g., [6, 7]). Our goal
is to estimate the vehicle trajectory only, using the inertial measurements and the observations of static features that are
tracked in consecutive images. This task is similar to the well-known visual odometry (VO) problem [8], with the added
characteristic that an IMU is available. We thus term the approachvisual-inertial odometry(VIO).

To date, the majority of algorithms proposed for real-time VIO are either extended Kalman filter (EKF)-based methods
(e.g., [1, 2, 9]), or methods utilizing iterative minimization over a window of states (e.g., [4, 10–12]). The latter generally
attain higher accuracy, as they re-linearize at each iteration to better deal with their nonlinear measurement models.
However, the need for multiple iterations also incurs a higher computational cost, compared to EKF-based methods.
Ideally, one would like to obtain accuracy similar to, or better than, that of an iterative-minimization algorithm, butat the
computational cost of an EKF algorithm. In this paper, we show how this can be achieved.

Generally, two types of EKF algorithms can be employed for real-time VIO. On one hand, one can employ EKF-
SLAM (e.g. [7,13,14] and references therein), in which the state vector contains the IMU state as well as feature positions.
To maintain the computational cost bounded (a requirement for real-time VIO), features that leave the field of view of the
camera can be removed from the state vector [14]. On the otherhand, EKF algorithms exist that only maintain a sliding
window of camera poses in the state vector, and use the feature observations to apply probabilistic constraints between
these poses (e.g., [1,15]). Out of this second class of methods, the multi-state constraint Kalman filter (MSCKF) [1] uses
the feature measurements optimally [16], and will be our focus here.

Both EKF-based SLAM and the MSCKF use the same measurement information, and are optimal, except for the
inaccuracies due to linearization. In other words, if the VIO system model was linear, then the estimation result produced
by an EKF-SLAM algorithm and by the MSCKF would be identical,and equal to the optimal MAP estimate. However,
in the presence of nonlinearity the MSCKF outperforms EKF-SLAM, as it does not approximate the feature’s position
pdf by a Gaussian. Features in the MSCKF are never included inthe state vector, so this is not necessary. As a result, the
MSCKF employs fewer approximations and attains higher estimation accuracy. Moveover, the MSCKF has computational
complexity onlylinear in the number of features, as opposed to EKF-SLAM’s cubic complexity. Thus, in this paper, we
focus on improving the performance of the MSCKF, since it is amore accurate and computationally efficient approach.

By analyzing the observability properties of the linearized system model employed by the EKF, we prove that the
MSCKF isinconsistent, i.e., that the covariance matrix of the estimation errors is larger than that computed by the filter [17,
Section 5.4]. In turn, this inconsistency leads to inaccurate state updates and ultimately a loss of accuracy. We show that
the root cause of this inconsistency is the way in which the Jacobians are computed in the EKF, which causes the linearized
system model to have incorrect observability properties.

As a key contribution of this work, we employ these theoretical results to propose modifications to the original MSCKF
algorithm that substantially improve its performance. Specifically, we here propose three key changes: First, we propose
a novelclosed-formexpression for computing the elements of the IMU error-state transition matrix. This expression can
be used in any case where the EKF is used for inertial navigation. Second, we adopt a different parameterization of the
orientation error, and third, we propose changing the way inwhich the filter Jacobians are computed. Taken together,
these three modifications ensure the appropriate observability properties of the linearized system model. Our simulation
and experimental results in Section 6 show that the resulting algorithm is consistent, and that it attains substantially
higher accuracy than the original MSCKF. More importantly,the results demonstrate that the modified MSCKF algorithm
outperforms, in terms ofboth accuracy and consistency, even an iterative-minimizationbased fixed lag smoother, an
algorithm with substantially higher computational cost.
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2 Observability and EKF Consistency

Our approach is motivated by recent results in the context of2D EKF-based SLAM [18,19]. These proved that a key factor
degrading the accuracy of the EKF for 2D SLAM is a mismatch between the observability properties of the underlying
nonlinear system and the linearized system-model of the EKF. To illustrate the main idea, consider a physical system
described by the nonlinear model:

ẋ = f(x,u) +w (1)

z = h(x) + n (2)

wherex is the system state,u is the control input,z is the measurement vector, and finallyw andn are noise processes.
To track the state vectorx on a digital computer we must discretize the continuous-time system model shown above.
Moreover, when an EKF is used for estimation, the filter equations rely on a linearized version of the discrete-time model,
described by the equations:

x̃k+1 = Φkx̃k +wdk
(3)

z̃k = Hkx̃k + nk (4)

wherex̃k represents the estimation error at time stepk, andΦk andHk denote the error-state transition matrix and the
measurement Jacobian matrix, respectively.

Since the EKF equations (e.g., covariance propagation and update, gain computation) are derived based on the lin-
earized system model in (3)-(4), the observability properties of this model play a crucial role in determining the perfor-
mance of the estimator. Ideally, one would like these properties to match those of the actual, nonlinear system in (1)-(2):
if a certain quantity is unobservable in the actual system, its error should also be unobservable in the linearized model.
However, in [18] it was shown that this isnot the case in 2D EKF SLAM: due to the way the Jacobians are computed in
the EKF, the robot orientation appears to be observable in the linearized system, while it is not in the actual, nonlinear
one. As a result of this mismatch, the filter produces too small values for the state covariance matrix (i.e., the filter be-
comesinconsistent), and this in turn degrades accuracy. Our analysis in Section 4 proves that the same problem affects
the MSCKF for VIO.

The observability properties of the nonlinear system for visual-inertial navigation have recently been studied in [2,20].
It has been shown that when a camera/IMU system navigates in an environment with a known gravitational acceleration
but no known features, four degrees of freedom are unobservable: three corresponding to the global position, and one
corresponding to the rotation about the gravity vector (i.e., the yaw). In our work, we examine the observability properties
of the MSCKF’s linearized system model by analyzing the observability matrix:

O ,








Hk

Hk+1Φk

...
Hk+mΦk+m−1 · · ·Φk








(5)

For the linearized system to have the correct observabilityproperties, the nullspace ofO should be of dimension four,
in agreement with the four unobservable quantities discussed above. In Section 4 we show that this is generallynot the
case: the yaw erroneously appears to be observable in the linearized system model, with detrimental effects to the filter’s
consistency. Furthermore, in Section 5 we show how small modifications to the MSCKF equations can ensure appropriate
properties of the matrixO, and substantially improve the filter’s performance.

3 IMU Propagation Model

As seen in (5), to analyze the observability properties of the MSCKF’s linearized system model we must have an expres-
sion for the error-state transition matrix,Φi. In previous work on inertial navigation, the discrete-time error-state transition
matrix for the IMU state has been computed in a number of ways.Most existing methods stem from the integration of the
differential equationΦ̇(t, ti) = F(t)Φ(t, ti), whereF(t) is the Jacobian of the continuous-time system model (see (1)
and (9)). For instance, [1] employs Runge-Kutta numerical integration, [21] presents a closed-form, approximate solution
to the differential equation, while many algorithms employthe simple approximationΦ ' I+ F∆t (which is equivalent
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to using one-step Euler integration) (e.g., [22] and references therein). All these methods for computingΦ have the disad-
vantage that, being numerical in nature, they are not amenable to theoretical analysis. More importantly, however, when
Φ is computed numerically and/or approximately, we have no guarantee about the properties of this matrix. Specifically,
we cannotguarantee that the observability matrix in (5) will have thedesirable nullspace, a prerequisite for consistent
estimation.

To address this problem, in this section we provide a closed-form expression for the IMU error-state transition matrix,
which can be used for theoretical analysis.

3.1 IMU State Modeling

We consider an IMU, to which we affix a coordinate frame{I}, moving with respect to a global frame{G}. The IMU
(gyroscope and accelerometer) measurements are given by1

ωm = I
ω + bg + nr (6)

am = I
GR

(
Ga− Gg

)
+ ba + na (7)

whereI
ω andGa denote the IMU angular rate and linear acceleration respectively, nr andna are white Gaussian noise

processes,bg andba are measurement biases modeled as random walk processes, and Gg is the gravity vector.
To use the IMU measurements for state propagation, we define the IMU state vector as follows [1]

xI =
[
I
Gq̄

T GpT GvT bg
T ba

T
]T

(8)

whereIGq̄ is the unit quaternion describing the rotation from the global frame to the IMU frame (i.e.,R(IGq̄) =
I
GR), and

Gp andGv denote the IMU position and velocity, respectively.
The continuous-time motion dynamics of the IMU are described by the following equations:

I
G
˙̄q(t) = 1

2Ω(Iω(t))IGq̄(t)
Gṗ(t) = Gv(t)

Gv̇(t) = Ga(t) ḃg(t) = nwg(t) ḃa(t) = nwa(t)
(9)

wherenwg andnwa are white Gaussian noise processes, and

Ω(Iω) =

[
−bIω×c I

ω

−I
ω

T
0

]

(10)

Following [1,21], the IMU error-state is defined as:

x̃I =
[
I
θ̃
T Gp̃T GṽT b̃T

g b̃T
a

]T

(11)

Here, for the position, velocity, and biases, the standard additive error definition is used
(
e.g.,Gp̃ = Gp − Gp̂

)
. On the

other hand, the orientation errorI
θ̃ satisfies the following equation [21]:

I
GR '

(

I3 − bI θ̃×c
)

I
GR̂ (12)

3.2 Error Propagation

We now derive the state transition matrixΦI` that describes how the errors in the IMU state estimate evolve during
propagation. For simplicity, we first deriveΦI` ignoring the IMU biases, and the result including the bias terms is shown
in Section 3.3.

At time step` we use the IMU state estimatêxI`|` and the IMU measurements to compute the propagated state
estimate,̂xI`+1|`

. Our goal is to derive an expression for the IMU error-state transition matrixΦI` such that̃xI`+1|`
'

1The preceding superscript for vectors (e.g.,G in Ga) denotes the frame of reference with respect to which quantities are expressed.A
B
R is the

rotation matrix rotating vectors from frame{B} to {A}, bc×c denotes the skew symmetric matrix corresponding to vectorc, 03 andI3 are the 3 by 3
zero and identity matrices respectively,â andã represent the estimate and error of the estimate of a variable a respectively, and̂ai|j is the estimate of
variablea at time stepi given measurements up to time stepj.
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ΦI` x̃I`|` +w`. Starting with the orientation error, we note that, regardless of the method used to integrate the continuous-
time motion dynamics in (9), the estimates of the rotation matrix at time-steps̀ and`+ 1 satisfy:

R̂`+1|` =
I`+1

I`
R̂ · R̂`|` (13)

where we have used the notationR̂`|` = R(IG ˆ̄q`|`) for brevity. I`+1

I`
R̂ is the estimated rotation between timesteps` and

`+ 1, computed using the IMU measurements. This estimate is corrupted by an error̃θ∆`, defined by:

I`+1

I`
R '

(

I− bθ̃∆`×c
)

·
I`+1

I`
R̂ (14)

On the other hand, the true rotation matrices at` and` + 1 satisfyI`+1

G R =
I`+1

I`
R · I`GR. Substituting (12), (13) and (14)

in this equation, we obtain the following expression for thelinearized error propagation:

I
θ̃`+1|` ' R̂`+1|` R̂

T
`|` ·

I
θ̃`|` + θ̃∆` (15)

To calculate the velocity error terms, we start with the identity:

Gv̂`+1|` =
Gv̂`|` +

∫ t`+1

t`

Gâτdτ (16)

= Gv̂`|` +

∫ t`+1

t`

(
G
Iτ
R̂Iτam + Gg

)

dτ (17)

where we have used (7). By definingŝ` =
∫ t`+1

t`

I`
Iτ
R̂Iτamdτ , we can write the above equation as:

Gv̂`+1|` =
Gv̂`|` +

Gg∆t+ R̂T
`|`ŝ` (18)

A key observation here is thatŝ` is a vector that depends only on the measurements, and thus bylinearizing (18) we
obtain:

Gṽ`+1|` ' −R̂T
`|`bŝ`×cI θ̃`|` +

Gṽ`|` + R̂T
`|`s̃` (19)

where the error term̃s` depends only on the IMU measurement noise. For the IMU position, we similarly write:

Gp̂`+1|` =
Gp̂`|` +

∫ t`+1

t`

Gv̂τdτ

= Gp̂`|` +
Gv̂`|`∆t+

1

2
Gg∆t2 + R̂T

`|`ŷ` (20)

whereŷ` =
∫ t`+1

t`

∫ s

t`

I`
Iτ
R̂Iτamdτds. Proceeding to linearize the above equation, we obtain:

Gp̃`+1|`'−R̂T
`|`bŷ`×cI θ̃`|`+

Gṽ`|`∆t+Gp̃`|`+R̂T
`|`ỹ` (21)

By combining (15), (19) and (21), we can now write:





I
θ̃`+1|`

Gp̃`+1|`
Gṽ`+1|`





︸ ︷︷ ︸

x̃I`+1|`

=






R̂`+1|` R̂
T
`|` 03 03

−R̂T
`|`bŷ`×c I3 ∆tI3

−R̂T
`|`bŝ`×c 03 I3






︸ ︷︷ ︸

ΦI`





I
θ̃`|`

Gp̃`|`
Gṽ`|`





︸ ︷︷ ︸

x̃I`|`

+






θ̃∆`

R̂T
`|`ỹ`

R̂T
`|`s̃`






︸ ︷︷ ︸

w`

(22)

To write the state transition matrix as a function of the state estimates only, we solve (18) and (20) forŝ` andŷ`, respec-
tively, to obtain:

ŝ` = R̂`|`

(
Gv̂`+1|`−

Gv̂`|`−
Gg∆t

)
(23)

ŷ` = R̂`|`

(

Gp̂`+1|`−
Gp̂`|`−

Gv̂`|`∆t−
1

2
Gg∆t2

)

(24)
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Therefore the IMU error-state transition matrix can be written as:

ΦI`(x̂I`+1|`
, x̂I`|`)=





R̂`+1|` · R̂
T
`|` 03 03

Φpq(x̂I`+1|`
, x̂I`|`) I3 ∆tI3

Φvq(x̂I`+1|`
, x̂I`|`) 03 I3



 ,

Φpq(x̂I`+1|`
, x̂I`|`)=−b

(
Gp̂`+1|`−

Gp̂`|`−
Gv̂`|`∆t−

1

2
Gg∆t2

)
×cR̂T

`|`

Φvq(x̂I`+1|`
, x̂I`|`)=−b(Gv̂`+1|`−

Gv̂`|`−
Gg∆t)×cR̂T

`|` (25)

Note that this matrix is a closed-form function of the state estimates, and thus can be computed independently of the way
in which the IMU state is integrated.

3.3 Full State Transition Matrix

If the biases are included in the derivations, the error-state transition matrix is computed following similar derivations as:

ΦIk =









Φqq 03 03 Φqbg
03

Φpq I3 ∆tI3 Φpbg
Φpa

Φvq 03 I3 Φvbg
Φva

03 03 03 I3 03

03 03 03 03 I3









(26)

where

Φqbg
=−R̂`+1|` · R̂

T
`|`

∫ t`+1

t`

I`
Iτ
R̂ dτ

Φpbg
=

∫ t`+1

t`

∫ w

t`

b(G ˙̂vτ −G g)×cR̂T
`|`

∫ τ

t`

I`
Is
R̂ ds dτ dw

Φpa=−R̂T
`|`

∫ t`+1

t`

∫ τ

t`

I`
Is
R̂ ds dτ

Φvbg
=

∫ t`+1

t`

b(G ˙̂vτ −G g)×cR̂T
`|`

∫ τ

t`

I`
Is
R̂ ds dτ

Φva=−R̂T
`|`

∫ t`+1

t`

I`
Iτ
R̂ dτ (27)

The derivation of this result is shown in Appendix A.

4 Observability Analysis

In this section, we examine the observability properties ofthe linearized system model used in the MSCKF. For clarity,
we here carry out the analysis for a state vector that does notinclude the IMU biases. Note however that, as shown in [20],
these biases are observable for general motion. Therefore their inclusion in the state vector would not change the main
result of this section, which is the artificialincreasein the number of observable states. This result holds also when the
biases are considered, as validated by the results in Section 6, were the biases are included in the estimated IMU state
vector.

4.1 Camera measurement model

Assuming a calibrated perspective camera, the measurementof thei-th feature at time step̀is given by

zi,` = h
(
C`pfi

)
+ ni,`, with (28)

C`pfi = C
I R R`

(
Gpfi −

GpI`

)
+ CpI (29)
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In this expression{CI R, CpI} are the known rotation and translation between the camera and the IMU,h(·) is the pinhole
camera model,h(f) = [fx/fz, fy/fz]

T , andni,` is the measurement noise vector. In the MSCKF features are tracked for
a number of frames, and then used for EKF updates. If featurei is processed for an MSCKF update at time-stepαi + 1,
the Jacobians of the measurement model with respect to the IMU state and the feature position are

HIi,` = Ji,`
C
I R

[
bR̂`|αi

(
Gp̂fi

− Gp̂`|αi

)
×c −R̂`|αi

03

]

Hfi,` = Ji,`
C
I R R̂`|αi

(30)

Ji,` =
∂h(f)

∂f

∣
∣
∣
∣
∣
f=C` p̂fi

=
1

C` ẑfi




1 0 −

C` x̂fi
C` ẑfi

0 1 −
C` ŷfi
C` ẑfi



 (31)

Thus, the linearized measurement residual equation becomes;

ri,` = HIi,` x̃I`|`−1
+Hfi,`

Gp̃fi + ni,` (32)

4.2 Structure of the observability matrix

To derive the observability matrix for MSCKF-based VIO, we first note that the MSCKF and EKF-SLAM rely on the
same underlying linearized discrete-time models. Specifically, both approaches are derived based on the IMU error-state
propagation model (22) and the linearized measurement residual model (32), but use different estimates for computing the
IMU error-state transition matrices and the measurement Jacobians. Therefore, if the MSCKF and EKF-SLAM use the
same linearization points, their implementations are based on exactly the same underlying linearized equations, which in
turn indicates that their ways of information acquisition and their observability properties are the same. Thus, to analyze
the observability properties of the MSCKF, we can analyze the equivalent EKF-SLAM system model, as long as we adjust
the linearization points. In this paper, we define the following state vector, which contains the IMU state as well as the
positions ofN features observed by the camera in the time interval[k, k +m]:

xI =
[
I
Gq̄

T GpT GvT GpT
1 · · · GpT

N

]T
(33)

If at time-step̀ the camera observesn` features, the JacobianH` containsn` block rows of the form

H
(i)
` =

[
HIi,` 03 · · · Hfi,` · · · 03

]
, i = 1, .., n`

whereHIi,` andHfi,` are shown in (30). Thus, the block row of the observability matrix corresponding to the measure-
ment of featurei at time step̀ has the following structure:

O
(i)
` = M

(i)
`

[

A
(i)
` ΦI`−1

· · ·ΦIk 03 · · · I3 · · · 03

]

, (34)

M
(i)
` = Ji,`

C
I R R̂`|αi

(35)

A
(i)
` =

[

bGp̂fi −
Gp̂`|αi

×cR̂T
`|αi

−I3 03

]

(36)

4.3 Using “ideal” Jacobians

It is interesting to first examine the properties of the observability matrix in the “ideal” case when the Jacobians are
evaluated using the true state values. If we compute the state transition matrix asΦI`(xI`+1

,xI`) (see (25)), and evaluate
the Jacobian matrices in (30) using the true states, substitution in (34) yields:

Ǒ
(i)
` =M̌

(i)
`

[

Γ̌
(i)

` −I3 −∆t`I3 03 · · · I3 · · · 03

]

, (37)

Γ̌
(i)

` =
⌊(

Gpfi −
Gpk − Gvk∆t` −

1

2
Gg∆t2`

)
×
⌋
RT

k (38)

In the above equations,∆t` denotes the time interval between time stepsk and`, and we have used the symbol “”̌ to
denote a matrix computed using the true state values.
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If we now define the matrixN as:

N =














03 Rk
Gg

I3 −bGpk×cGg
03 −bGvk×cGg
I3 −bGpf1×cGg
I3 −bGpf2×cGg
...

...
I3 −bGpfN×cGg














(39)

it is easy to verify thatǑ(i)
` ·N = 02×4. Since this holds for anyi and anỳ (i.e., for all block rows of the observability

matrix), we conclude thaťO · N = 0, which in turn means that all four columns ofN belong to the nullspace of̌O.
In addition, in Appendix C, we prove that the dimension of thenullspace ofǑ is equal to four, which indicates that the
columns ofN exactly consist of the basis of the nullspace ofǑ. Moreover, in Appendix D, we show that the first block
column ofN corresponds to a global translation of the state vector, while the last column corresponds to rotations about
gravity. In other words, the nullspace of the matrixǑ, which is the unobservable subspace of the linearized system model,
has properties that agree with those of the actual, nonlinear system. Thus, if we were able to estimate all the Jacobians
using the true state estimates, the linearized system modelwould have the desired observability properties.

4.4 Using the actual Jacobians

We now examine the observability properties of the linearized system when the state transition matrix and all Jacobians
are computed using the latest available state estimates. Using the Jacobians in (30), the block row ofO corresponding to
the observation of featurei at time-step̀ becomes

O
(i)
` = M

(i)
`

[

Γ
(i)
` +∆Γ

(i)
` −I3 −∆t`I3 03 · · · I3 · · · 03

]

(40)

where

Γ
(i)
` =

⌊
Gp̂fi −

Gp̂k|k − Gv̂k|k∆t` −
1

2
Gg∆t2` ×

⌋
R̂T

k|k (41)

and

∆Γ
(i)
` =

(

bGp̂fi −
Gp̂`|αi

×cĒq + Ēp +

`−1∑

j=k+1

( j
∑

s=k+1

Es
v∆t+Ej

p+

j−1
∑

s=k+1

Φvq(x̂Is+1|s
, x̂Is|s)R̂s|sE

s
q∆t+Φpq(x̂Ij+1|j

, x̂Ij|j )R̂j|jE
j
q

))

R̂T
k|k (42)

with

Ēq = I3 −
(
R̂T

`|αi
R̂`|`−1

)
`−1∏

n=k+1

(
R̂T

n|nR̂n|n−1

)

Ej
q = I3 −

j
∏

n=k+1

(
R̂T

n|nR̂n|n−1

)

Ej
p = bGp̂j|j−1 −

Gp̂j|j×c, Ēp = bGp̂`|`−1 −
Gp̂`|αi

×c

Ej
v = bGv̂j|j−1 −

Gv̂j|j×c (43)

By comparing (40) and (41) to (37) and (38) we see that the structure of the observability matrix in both cases is similar.
The key difference is that when the Jacobians are evaluated using the stateestimates, the “disturbance” term∆Γ

(i)
` appears.

While∆Γ
(i)
` is quite complex, we can observe that it contains terms that depend on the corrections (e.g.,Gp̂j|j−

Gp̂j|j−1,

9



Gv̂j|j −
Gv̂j|j−1) that the filter applies at different time steps. Since thesecorrections are random, the term∆Γ

(i)
` is a

random one, and this “destroys” the special structure of theobservability matrix. As a result, the propertyO(i)
` ·N = 0

does not hold, and it can be shown that the nullspace ofO is now of dimension only three (see Appendix E). This
nullspace is spanned by the first three column vectors (the first block column) ofN in (39), which means that the global
yaw erroneously appearsto be observable. As a result the MSCKF underestimates the uncertainty of the yaw estimates,
which, in turn, leads to loss of accuracy.

4.5 Observability of EKF-SLAM

In this section, we show that the inconsistency problem alsoexists in EKF-SLAM. In EKF-SLAM, the Jacobian matrices
are computed as:

HIi,` = Ji,` ·
C
I R

[

bR̂`|`−1

(
Gp̂fi,`|`−1 −

Gp̂`|`−1

)
×c −R̂`|`−1 03

]

Hfi,` = Ji,` ·
C
I R · R̂`|`−1 (44)

Since the only difference of the observability matrices forthe MSCKF and EKF-SLAM is the linearization points, the
block row of the observability matrix of EKF-SLAM, which corresponds to the observation of featurei at time-step̀ , has
the same structure with (40) but with different termsM

(i)
` , Γ(i)

` . Specifically, block matricesM(i)
` andΓ(i)

` are computed
as:

Γ
(i)
` =

⌊
Gp̂fi,k|k−1

− Gp̂k|k − Gv̂k|k∆t` −
1

2
Gg∆t2` ×

⌋
R̂T

k|k +∆Γ̄
(i)
`

M
(i)
` = Ji,k ·

C
I R · R̂`|` (45)

where
∆Γ̄

(i)
` = ∆Γ

(i)
` +∆Gpfi (46)

and
∆Gpfi = bGp̂fi,`|`−1

− Gp̂fi,k|k−1
×cR̂T

k|k (47)

Moveover, the block matrix̄Eq andĒp in ∆Γ
(i)
` become:

Ēq = bGp̂fi,`|`−1
− Gp̂`|`−1×c

( `−1∏

n=k+1

(
R̂T

n|nR̂n|n−1

)
− I3

)

(48)

Ēp = 03×3 (49)

We thus see that, the observability matrix of EKF-SLAM contains two disturbance terms,∆Γ
(i)
` and∆Gpfi . The first

term is generated due to the different estimates of the same IMU states used in the filter Jacobians, and the second term
due to the different estimates of the same features. Similarly to the proof of the rank of the MSCKF observability matrix
in Appendix E, we can easily prove that the dimension of the nullspace of the EKF-SLAM observability matrix is also
three, where the yaw appears to be observable. Thus, EKF-SLAM is also inconsistent.

5 Improving the performance of the MSCKF

In this section, we propose modifications to the original MSCKF algorithm that ensure that the linearized system model
has appropriate observability properties. As shown in the preceding section, the root cause of the problem is the fact that
different estimates of the same statesappear in the Jacobians. These estimates result in nonzero values for the terms̄Eq,
Ej

q, Ej
p, Ēp, Ej

v, and lead to incorrect properties for the observability matrix. The modifications proposed in this section
aim at removing these terms, to restore the appropriate dimension of the unobservable subspace.
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5.1 Global orientation error parametrization

We first address the orientation-dependent terms,Ēq andEj
q. Specifically, we propose a simple re-parameterization of

the IMU orientation error: instead of using the error definition in (12), we employ the following one:

I
GR ' I

GR̂
(

I3 − bGθ̃×c
)

(50)

Note that here the matrixI3 − bGθ̃×c is a rotation matrix (to first-order approximation) that describes the rotation from
the estimated global frame to the true one. Thus, the3×1 vectorGθ̃ is the orientation error expressed in theglobal frame,
while the original error parameterization in (12) expresses the error in thelocal frame. With this parameterization, the
IMU error state at time step̀can be written as:





G
θ̃`

Gp̃`
Gṽ`





︸ ︷︷ ︸

x̃?
`

=





R̂T
` · I θ̃`
Gp̃`
Gṽ`



 =





R̂T
` 03 03

03 I3 03

03 03 I3





︸ ︷︷ ︸

ĈT
`





I
θ̃`

Gp̃`
Gṽ`





︸ ︷︷ ︸

x̃`

(51)

Using (51), we can write:

x̃?
`+1|` = ĈT

`+1|` · x̃`+1|` = ĈT
`+1|`ΦI`(x̂I`+1|`

, x̂I`|`) · x̃`|` = ĈT
`+1|`ΦI`(x̂I`+1|`

, x̂I`|`)Ĉ`|`
︸ ︷︷ ︸

Φ?
I`

(x̂I`+1|`
,x̂I`|`

)

·x̃?
`|` (52)

Substituting (25) into the above equation, we can obtain theIMU error-state transition matrix for the global orientation
parametrization:

Φ?
I`
(x̂I`+1|`

, x̂I`|`) =





I3 03 03

Φ?
pq(x̂I`+1|`

, x̂I`|`) I3 ∆tI3
Φ?

vq(x̂I`+1|`
, x̂I`|`) 03 I3





Φ?
pq(x̂I`+1|`

, x̂I`|`) = −bGp̂`+1|` −
Gp̂`|` −

Gv̂`|`∆t−
1

2
Gg∆t2×c

Φ?
vq(x̂I`+1|`

, x̂I`|`) = −b(Gv̂`+1|` −
Gv̂`|` −

Gg∆t)×c

Moreover, the measurement Jacobian matrices become:

H?
Ii,`

= M
(i)
`

[
b
(
Gp̂fi

− Gp̂`|αi

)
×c −I3 03×3

]
= M

(i)
` A

(i)?

`

H?
fi,`

= M
(i)
` (53)

The key advantage of this parameterization is that bothΦ?
I`

and the termA(i)?

` are independent of the orientation estimates.
Substituting the above values in (34) we obtain the following for each block row of the observability matrix:

O
(i)?

` = M
(i)
`

[

Γ
(i)?

` +∆Γ
(i)?

` −I3 −∆t`I3 03 · · · I3 · · · 03

]

(54)

where

Γ
(i)?

` =
⌊(

Gp̂fi −
Gp̂k|k − Gv̂k|k∆t` −

1

2
Gg∆t2`

)
×
⌋

∆Γ
(i)?

` = Ēp +

`−1∑

j=k+1

(Ej
p +

j
∑

s=k+1

Es
v∆t) (55)

We thus see that now the “disturbance” term∆Γ
(i)?

` is simplified, and does not contain any elements due to the orientation
estimates. Next, we show how the remaining terms due to the position and velocity can also be removed.
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Figure 1: IMU yaw errors and±3σ bounds in one representative trial. The yaw error for the MSCKF (solid line –
green), the m-MSCKF (dashed line – red), and the FLS (dashdotline – cyan). The±3σ bounds for the MSCKF (circles
– magenta), the m-MSCKF (squares – blue), and the FLS (triangles – black).

5.2 Use of first-estimate Jacobians

The disturbance term∆Γ
(i)?

` is a function of the differences between the estimates of theIMU position and velocity that
are available at different time instances (see (43) and (55)). If we ensure that all Jacobians are computed using thesame
estimate for each of these states, the disturbance terms will vanish. Specifically, we here propose to use thefirst estimate
of each IMU position and velocity when computing the filter Jacobian matrices [18]. This requires two changes. First,
the state transition matrix at time-step` is computed asΦ?

I`
(x̂I`+1|`

, x̂I`|`−1
), instead ofΦ?

I`
(x̂I`+1|`

, x̂I`|`). Second, the
measurement Jacobians are computed as follows:

H?
Ii,

=̀M
(i)
`

[
b
(
Gp̂fi

−Gp̂`|`−1

)
×c −I3 03

]
, H?

fi,`
=M

(i)
`

As a result of these two changes, only the estimateGp̂`|`−1 (the first that becomes available) is used in all the Jacobians

that involveGp`, and the same holds for the velocity vectorsGv`, for all `. In turn, it is easy to show that the term∆Γ
(i)?

`

in (55) becomes identically zero, and the observability matrix regains the correct rank. As shown in the next section, the
modified MSCKF algorithm attains substantially improved performance, both in terms of consistencyandaccuracy. This
occurs despite the fact that it uses older, and thus less accurate, estimates in computing Jacobians.

6 Results

6.1 Simulation tests

We first present the results of Monte-Carlo simulation tests, which allow us to examine the statistical properties of the
modified MSCKF algorithm. To build a realistic simulation setting, we generate our simulation environment based on a
real-world dataset, collected at the Cheddar Gorge area in the UK [23]. This dataset involves a 29.6-km long trajectory,
travelled over 57 minutes. For our simulations, we generatea ground truth trajectory (position, velocity, orientation)
that matches the vehicle’s actual trajectory, as computed by a high-precision INS system. Using this trajectory, we
subsequently generate IMU measurements corrupted with noise and bias characteristics similar to those of the Xsens
MTi-G sensor used in the dataset. Moreover, we generate monocular feature tracks with statistical characteristics (feature
number and distance, average track length, noise variance)similar to those of the actual dataset. Specifically, 225 features
are observed in each image on average, and each feature’s track length is sampled from an exponential distribution with
a mean of 4.1 frames. The IMU measurements are available at 100 Hz, while the camera frame rate is 20 Hz, as in the
actual dataset.

In each Monte-Carlo trial, the IMU measurements and featuretracks are randomly generated, and this data is processed
by the following three algorithms: (i) The original MSCKF algorithm [1], (ii) The modified MSCKF algorithm described
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Figure 2: Average NEES and RMSE over 50 Monte Carlo trials. The solid green line corresponds to the MSCKF, the red
dashed line to the m-MSCKF, and the black dashdotted line to the FLS.

in the previous section (denoted as m-MSCKF), and (iii) A fixed-lag smoother (FLS) in information form [11]. The FLS
employs the same feature-marginalization approach as in the MSCKF, but uses iterative minimization, which enables it to
re-linearize the measurement models at each iteration. To ensure a fair comparison all three algorithms process the same
data, and use a sliding window of the same length.

Before presenting the cumulative results for all the Monte-Carlo trials, it is useful to examine the results of the three
competing methods on asingletrial. Specifically, the most interesting results are thosefor the estimates of the rotation
about gravity (the yaw). Fig. 1 shows the yaw errors for the three algorithms, as well as the±3σ envelopes computed using
the reported covariance of each method (these are the reported 99.7% confidence regions). The most important observation
here is that the reported standard deviation for both the MSCKF and the FLS fluctuates about a constant value,as if the
yaw was observable. In contrast, the reported standard deviation for the m-MSCKF continuously increases, which is what
we expect given that the yaw is not actually observable. Moreover, this plot shows that the yaw errors of the MSCKF and
FLS lie outside the±3σ bounds, which indicates inconsistency. Fig. 1 clearly demonstrates the effects of the incorrect
observability properties of the MSCKF’s linearized systemmodel. These cause the yaw uncertainty to be underestimated,
and lead to errors larger than those the filter expects. It is important to point out that the FLS also suffers from the same
problem, even though it employs iterative re-linearization [10].

Fig. 2 plots the average NEES and RMS error for the IMU pose (position and orientation), averaged over 50 Monte-
Carlo trials. Regarding the NEES, it becomes immediately clear that the m-MSCKF exhibits substantially higher consis-
tency than the two competing methods. Specifically, the average NEES is 58.7 for the MSCKF, 52.7 for the FLS, and 6.8
for the m-MSCKF. We therefore see that the m-MSCKF obtains anNEES value close to the theoretically expected one
for a consistent estimator, which is 6 (equal to the size of the error state). These results validate the theoretical analysis of
Section 5, and demonstrate that the proposed modifications to the MSCKF significantly improve its consistency.

In addition to the consistency improvement, the results in Fig. 2 show that the m-MSCKF outperforms the two other
methods in terms ofaccuracy. Specifically, the RMS error for the position (averaged overall trials and through time) is
148.9 m for the MSCKF, 129.1 m for the FLS, and 94.2 m for the m-MSCKF. For the orientation errors we obtain3.55o

for the MSCKF,2.79o for the FLS, and2.06o for the m-MSCKF. In both cases, the m-MSCKF attains smaller overall
errors. We attribute this to the fact that, by ensuring the correct observability properties for the linearized system model,
the m-MSCKF is capable of more accurately representing the uncertainty of the different states. In turn, this makes it
possible to compute more suitable values for the Kalman gainand the state corrections, leading to overall better accuracy.
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Figure 3: Sample images recorded during the experiment.
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Figure 4: Trajectory estimates plotted on a map of Riverside. The initial vehicle position is shown by a green circle, and
the end position by a red square. The green solid line corresponds to the MSCKF, the red dashed line to the m-MSCKF,
and the black dashdotted line to the FLS.

6.2 Real-world experiment

We also present results from a real-world experiment, during which an IMU/camera platform was mounted on top of a
car and driven on the streets of Riverside, CA. The sensors consisted of an Inertial Science ISIS IMU and a PointGrey
Bumblebee2 stereo pair (only a single camera’s images are used). The IMU provides measurements at 100 Hz, while
the camera images were stored at 10 Hz. Harris feature pointsare extracted, and matching is carried out by normalized
cross-correlation. The vehicle trajectory is approximately 5.5 km long, and a total of 7922 images are processed. Some
sample images from the experiment are shown in Fig. 3.

Fig. 4 shows the trajectory estimates computed by the three algorithms (MSCKF, FLS, and m-MSCKF) on a map
of the area where the vehicle drove. While a precise GPS ground truth is not available for this experiment, by closely
examining the trajectory, we can observe that the m-MSCKF estimate closely follows the streets in the map. By contrast,
the trajectories computed by the two other methods deviate from the street layout (this is most prominent in the south-east
corner of the map). Moreover, Fig. 5 plots the reported standard deviation of the yaw for the three algorithms (since
orientation ground truth is not available, the errors cannot be plotted). Similarly to what was observed in Fig. 1, we see
that only the standard deviation for the m-MSCKF continuously increases, as predicted by the observability propertiesof
the system. In contrast, the MSCKF and the FLS underestimatethe yaw uncertainty, and obtain less accurate trajectory
estimates. Thus, we see that the experimental results agreewith the findings of the simulations, as well as the theoretical
analysis.
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7 Conclusion

In this paper we have presented a detailed theoretical analysis of the properties of the linearized system model used in
EKF-based visual-inertial odometry. This analysis provedthat this model has incorrect observability properties, which
cause the global orientation toappear to beobservable. In turn, this causes the filter to underestimatethe uncertainty
of the orientation estimates, i.e., to becomeinconsistent. Our results showed that this inconsistency also degrades the
accuracy of the estimates. Based on the theoretical analysis, we proposed three modifications of the MSCKF algorithm
for visual-inertial odometry [1]. These modifications, which incur no additional computational cost, include (i) A closed-
form computation of the EKF error-state transition matrix,(ii) A new parameterization of the orientation error, and (iii)
A new method of selecting the linearization points in the filter. Taken together, these modifications ensure that the
resulting algorithm remains consistent. Our simulation and experimental results demonstrate that the modified MSCKF
substantially outperforms the original algorithm, as wellas iterative-minimization based fixed-lag smoothing. Overall,
the theoretical and experimental results of the paper show that the modified MSCKF algorithm is capable of long-term,
high-precision, consistent visual-inertial odometry.
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A IMU State transition matrix

We here show the detailed derivation of the IMU error-state transition matrix, when the biases are included. Starting with
the orientation error, we note that the derivation presented in Section 3 still holds. The difference is that now the error term
θ̃∆` in (15) depends on the error in the bias estimates. To deriveθ̃∆`, we start by introducing the following differential
equation for the orientation matrixR`:

Ṙ` = bI`ω×cR` (56)

Similarly, we can write:

˙̂
R`|` = bI`ω̂×cR̂`|` (57)

Therefore, computing derivatives on both sides of (12) leads to

bI`ω×cR` ' bI` ω̂×cR̂`|` − bI θ̃`|`×cbI`ω̂×cR̂`|` − bI ˙̃θ`|`×cR̂`|` (58)

Substituting (12) forR` leads to

bI`ω×cR̂`|` − bI`ω×cbI θ̃`|`×cR̂`|` ' bI`ω̂×cR̂`|` − bI θ̃`|`×cbI`ω̂×cR̂`|` − bI ˙̃θ`|`×cR̂`|` ⇒ (59)

bI`ω̃×c − bI`ω̂×cbI θ̃`|`×c ' −bI θ̃`|`×cbI`ω̂×c − bI ˙̃θ`|`×c (60)

where we have used the notationI`ω̃ = I`ω − I` ω̂. Therefore, we can write

bI ˙̃θ`|`×c ' −
(

bI` ω̂×cbI θ̃`|`×c − bI θ̃`|`×cbI`ω̂×c
)

− bI` ω̃×c = −
⌊
bI` ω̂×cI θ̃`|`×

⌋
− bI`ω̃×c (61)

Thus, the differential equation of the IMU orientation error becomes:

I ˙̃
θ`|` ' −bI`ω̂×cI θ̃`|` −

I` ω̃ (62)

Solving the above equation, we obtain:

I
θ̃`+1|` ' Φqq(x̂`+1|`, x̂`|`)

I
θ̃`|` +

∫ t`+1

t`

Φqq(x̂`+1|`, x̂τ |`)
Iτ ω̃dτ (63)

whereΦqq is the IMU orientation error-state transition matrix, which is shown in (15). In addition, by comparing (15)
and (63) we can write:

θ̃∆` ' R̂`+1|`R̂
T
`|`

∫ t`+1

t`

I`
Iτ
R̂Iτ ω̃dτ (64)

Using the definition ofIωm in (6), we obtain:

Iτ ω̃ =
(
Iτωm − bgτ

− nrτ

)
−
(
Iτωm − b̂gτ

)

(65)

= b̃gτ
− nrτ (66)

Thus, (64) becomes:

θ̃∆` ' R̂`+1|`R̂
T
`|`

∫ t`+1

t`

I`
Iτ
R̂(−b̃gτ

− nrτ )dτ (67)

whereb̃gτ
can be computed as:

b̃gτ
= b̃g`|`

+

∫ τ

t`

nwgs
ds (68)

Combining (67) and (68) leads to:

θ̃∆` ' −R̂`+1|`R̂
T
`|`

∫ t`+1

t`

I`
Iτ
R̂dτ · b̃g`|`

+ R̂`+1|`R̂
T
`|`

∫ t`+1

t`

(

−nrτ −

∫ τ

t`

nwgs
ds

)

dτ

︸ ︷︷ ︸

nθ`+1

(69)
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Therefore, (15) becomes

I
θ̃`+1|` ' R̂`+1|` R̂

T
`|` ·

I
θ̃`|` − R̂`+1|`R̂

T
`|`

∫ t`+1

t`

I`
Iτ
R̂dτ · b̃g`|`

+ nθ`+1
(70)

and as a result we obtain:

Φqbg
= −R̂`+1|` · R̂

T
`|`

∫ t`+1

t`

I`
Iτ
R̂ dτ (71)

Turning our attention to the velocity-related term, we start by including the IMU biases in̂s` in (16):

ŝ` =

∫ t`+1

t`

I`
Iτ
R̂(Iτam − b̂aτ

)dτ (72)

Now the error term̃s` can be computed as:

s̃` =

∫ t`+1

t`

I`
Iτ
R(Iτam − baτ

− naτ
)dτ −

∫ t`+1

t`

I`
Iτ
R̂(Iτam − b̂aτ

)dτ (73)

'

∫ t`+1

t`

(I3 − bθ∆τ×c)I`Iτ R̂(Iτam − baτ
− naτ

)dτ −

∫ t`+1

t`

I`
Iτ
R̂(Iτam − b̂aτ

)dτ (74)

=

∫ t`+1

t`

I`
Iτ
R̂(−b̃aτ

− naτ
)dτ −

∫ t`+1

t`

bθ∆τ×cI`Iτ R̂(Iτ â+ b̂aτ
− b̂aτ

− naτ
)dτ (75)

'

∫ t`+1

t`

I`
Iτ
R̂(−b̃aτ

− naτ
)dτ +

∫ t`+1

t`

bI`Iτ R̂
Iτ â×cθ∆τdτ (76)

=

∫ t`+1

t`

I`
Iτ
R̂(−b̃aτ

− naτ
)dτ +

∫ t`+1

t`

R̂`|`bR̂
T
`|`

I`
Iτ
R̂Iτ â×cR̂T

`|`θ∆τdτ (77)

=

∫ t`+1

t`

I`
Iτ
R̂(−b̃aτ

− naτ
)dτ +

∫ t`+1

t`

R̂`|`b
G ˙̂vτ − Gg×cR̂T

`|`θ∆τdτ (78)

where in line (76) we have omitted terms involving the products of errors. At this point we substitute:

θ∆τ =

∫ τ

t`

I`
Is
R̂ds · b̃g`|`

+ nθτ
(79)

b̃aτ
= b̃a`|`

−

∫ τ

t`

nas
ds (80)

Thus, (78) becomes:

s̃` = −

∫ t`+1

t`

I`
Iτ
R̂ dτ · b̃a`|`

+ R̂`|`

∫ t`+1

t`

bG ˙̂vτ − Gg×cR̂T
`|`

∫ τ

t`

I`
Is
R̂ ds dτ · b̃g`|`

+ nv`+1
(81)

wherenv`+1
represents all the noise terms that do not depend on the errorstate. By substituting the above equation

into (19), we obtain:

Φvbg
=

∫ t`+1

t`

b(G ˙̂vτ −G g)×cR̂T
`|`

∫ τ

t`

I`
Is
R̂ ds dτ (82)

Φva=−R̂T
`|`

∫ t`+1

t`

I`
Iτ
R̂ dτ (83)

For the IMU position error, we start by including the biases in the termŷ`:

ŷ` =

∫ t`+1

t`

∫ s

t`

I`
Iτ
R̂(Iτam − b̂aτ

)dτds (84)
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and thus the error term̃y` is given by:

ỹ` =

∫ t`+1

t`

∫ s

t`

I`
Iτ
R̂(Iτam − baτ

− naτ
)dτds−

∫ t`+1

t`

∫ s

t`

I`
Iτ
R̂(Iτam − b̂aτ

)dτds (85)

=

∫ t`+1

t`

(∫ s

t`

I`
Iτ
R̂(Iτam − baτ

− naτ
)dτds −

∫ s

t`

I`
Iτ
R̂(Iτ am − b̂aτ

)

)

dτds (86)

=

∫ t`+1

t`

s̃s ds (87)

At this point we use the result of (87) to write:

ỹb
` = −

∫ t`+1

t`

∫ τ

t`

I`
Iτ
R̂ ds dτ · b̃a`|`

+ R̂`|`

∫ t`+1

t`

∫ w

t`

bG ˙̂vτ − Gg×cR̂T
`|`

∫ τ

t`

I`
Is
R̂ ds dτ dw · b̃g`|`

+ np`+1
(88)

wherenp`+1
is a noise term independent of the error state. Thus, by combining this result with (21), we obtain

Φpbg
=

∫ t`+1

t`

∫ w

t`

b(G ˙̂vτ −G g)×cR̂T
`|`

∫ τ

t`

I`
Is
R̂ ds dτ dw (89)

Φpa=−R̂T
`|`

∫ t`+1

t`

∫ τ

t`

I`
Is
R̂ ds dτ (90)

B Analysis of EKF SLAM and the MSCKF algorithm

We here prove that, in a linear-Gaussian system, the state estimate and covariance matrix computed by the MSCKF is
identical to the MAP estimate for the IMU pose. Since EKF-SLAM is also a MAP estimator, this means that the MSCKF
and EKF-SLAM would be identical in a linear-Gaussian system.

Let us consider the following linear system:

xi =Φixi−1 +wi−1 (91)

zij =Hxij
xi +Hfijpfj + nij (92)

wherexi, i = 0 . . . N are the IMU states,pfj , j = 1 . . .M are the feature positions,wi andnij are zero-mean white
Gaussian noise processes with covariance matricesQi andσ2I2, respectively, andΦi,Hxij

, andHfij are known matrices.

By denoting the vector containing all the IMU states asx =
[
xT
0 xT

1 xT
2 · · · xT

N

]T
, (91) can be written as:

x =










x0

x1

x2

...
xN










=










I

Φ1

Φ2Φ1

...
ΦN · · ·Φ1










︸ ︷︷ ︸

B

x0 +










0

w0

Φ2w0 +w1

...
ΦN · · ·Φ2w0 + · · ·+wN−1










(93)

In addition, we denote the vector containing all the featurepositions asf =
[
fT1 fT2 · · · fTM

]T
, and the vector

containing all measurements as

z = Hxx+Hf f + n (94)

whereHx andHf , are matrices with block rowsHxij
andHfi,j , respectively.

To formulate the MAP estimator, we assume an initial estimate for the first robot pose,x0 ∼ N (x̂0,P0). Thus the
MAP estimate forx andf can be obtained by:

xMAP, fMAP = arg max
x,f

P (x, f , z) (95)

= arg max
x,f

log
(

P (x, f , z)
)

(96)
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= arg max
x,f

log
(

P (x)P (z|x, f)
)

(97)

whereP(·) denotes the probability function. Using (93), the prior distribution of the statex could be easily obtained as
x ∼ N (x̂s,Ps), with:

x̂s = Bx̂0, Ps =








P0 P0Φ
T
1 P0Φ

T
1 Φ

T
2 · · ·

Φ1P0 Φ1P0Φ
T
1 +Q0 Φ1P0Φ

T
1 Φ

T
2 +Q0Φ

T
2 · · ·

Φ2Φ1P0 Φ2Φ1P0Φ
T
1 +Φ2Q0 Φ2Φ1P0Φ

T
1 Φ

T
2 +Φ2Q0Φ

T
2 +Q1 · · ·

...
...

...
. . .








(98)

Thus, the MAP estimate forx andf can be formulated as:

xMAP, fMAP = −arg min
x,f

(

‖ x− x̂s ‖
2
Ps

+ ‖ z−Hxx−Hf f ‖
2
(σ2I)

)

(99)

where we have used the notation‖ e ‖2P= eTP−1e. By solving the above optimization problem, we obtain the optimal
MAP estimate:

[
x̂MAP

f̂MAP

]

= Λ−1

[
P−1

s x̂s +
1
σ2H

T
xz

1
σ2H

T
f z

]

(100)

whereΛ is the information matrix:

Λ =

[
P−1

s + 1
σ2H

T
xHx

1
σ2H

T
xHf

1
σ2H

T
f Hx

1
σ2H

T
f Hf

]

(101)

andΛ−1 is the covariance matrix of the MAP estimate. Using the standard properties of the inversion of a partitioned
matrix, we can show from (100) that the estimatex̂MAP and its covariance matrix equal:

x̂MAP =PMAP

(

P−1
s x̂s+

1

σ2
HT

x

(

I−Hf

(
HT

f Hf

)−1
HT

f

)

z

)

(102)

PMAP =

(

P−1
s +

1

σ2
HT

x

(

I−Hf

(
HT

f Hf

)−1
HT

f

)

Hx

)−1

(103)

On the other hand, in the MSCKF algorithm, if we use the IMU measurements to propagate the state estimates, and
then employ the camera measurements for an update, the update is performed based on the residual:

ro
.
= VT (z−HT

x x̂s) =
(
VTHx

)
x̃s + no (104)

whereV is a matrix whose columns form an orthonormal basis for the left nullspace ofHf , andno is a noise vector with
covariance matrixσ2I. Using the EKF equations, the state and covariance update can be written as:

x̂MSC = x̂s +Kro (105)

PMSC =

(

P−1
s +

1

σ2

(
VTHx

)T (
VTHx

)
)−1

(106)

whereK is the Kalman gain, which can be written as [24]:

K =
1

σ2
PMSC

(
VTHx

)T
(107)

Our goal is to show that̂xMSC = x̂MAP, andPMSC = PMAP. To this end, we note that the matrixI−Hf

(
HT

f Hf

)−1
HT

f

is the orthogonal projector onto the left nullspace ofHf , and thusI−Hf

(
HT

f Hf

)−1
HT

f = VVT [25]. Using this result,
the equalityPMSC = PMAP follows immediately, and we can also write (102) as:

x̂MAP = PMSC

(

P−1
s x̂s +

1

σ2
HT

xVVT z

)

(108)
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Substitution of (104) and (107) in (105) yields:

x̂MSC= x̂s +
1

σ2
PMSC

(
VTHx

)T
VT (z−HT

x x̂s)

=PMSC

((

P−1
MSC−

1

σ2
HT

xVVTHT
x

)

x̂s+
1

σ2
HT

xVVT z

)

Showing that the last equation is equal to (108) follows immediately by use of (106).

C Rank of the observability matrix in the “ideal” MSCKF

We here prove that the observability matrix shown in (37) hasa nullspace of dimension 4. For this reason, we apply a
sequence of elementary column operations on this matrix, totransform it to a different one with the same rank, but which
facilitates analysis. In the following, we use the symbol∼ to denote matrices related by elementary column operations.
From (37) we obtain:

Ǒ
(i)
` = M̌

(i)
`

[ ⌊(
Gpfi −

Gpk − Gvk∆t` −
1
2
Gg∆t2`

)
×
⌋
RT

k −I3 ∆t`I3 03 · · · I3 · · · 03

]
(109)

where the partitioning denotes the separation between the columns corresponding to the IMU states and the those cor-
responding to the features. We now apply a sequence of elementary column operations, starting by multiplying the first
block column byRk:

Ǒ
(i)
` ∼ M̌

(i)
`

[ ⌊(
Gpfi −

Gpk −
Gvk∆t` −

1
2
Gg∆t2`

)
×
⌋

−I3 ∆t`I3 03 · · · I3 · · · 03

]

Multiply second block column by -bGpk×c and add to first block column]

∼ M̌
(i)
`

[ ⌊(
Gpfi −

Gvk∆t` −
1
2
Gg∆t2`

)
×
⌋

−I3 ∆t`I3 03 · · · I3 · · · 03

]

Multiply third block column bybGvk×c and add to first block column

∼ M̌
(i)
`

[ ⌊(
Gpfi −

1
2
Gg∆t2`

)
×
⌋

−I3 ∆t`I3 03 · · · I3 · · · 03

]

Multiply column corresponding toi-th feature byb−Gpfi×c and add to first block column,∀i

∼ M̌
(i)
`

[ ⌊
− 1

2
Gg∆t2` ×

⌋
−I3 ∆t`I3 03 · · · I3 · · · 03

]

Multiply first block column by−2

∼ M̌
(i)
`

[
∆t2`

⌊
Gg ×

⌋
−I3 ∆t`I3 03 · · · I3 · · · 03

]

Add all block columns corresponding to the features to the second block column

∼ M̌
(i)
`

[
∆t2`

⌊
Gg ×

⌋
03 ∆t`I3 03 · · · I3 · · · 03

]

We now define the unitary matrix

F =
[

gp1
gp2

Gg

||Gg||2

]

where the two unit vectorsgp1
andgp2

are on the plane perpendicular toGg, and are chosen to form an orthogonal
coordinate system. SinceF is non-singular, we can multiply the first block column of theabove expression byF to
obtain:

Ǒ
(i)
` ∼ M̌

(i)
`

[
∆t2`G 03×1 03 ∆t`I3 03 · · · I3 · · · 03

]
(110)

where
G = ||Gg||2

[
gp1

gp2

]

At this point, we note that through a sequence of elementary column operations, all block rows of the matrix̌O have been
transformed to a form where the third to sixth columns are allzero. Thus, the matrix̌O is rank deficient byat least four,
and the zero columns can be omitted without changing the rank:

Ǒ
(i)
` ∼ M̌

(i)
`

[
∆t2`G ∆t`I3 03 · · · I3 · · · 03

]
= Ť

(i)
` (111)
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To show that the matrix̌O is rank deficient byexactlyfour, we need to show that the matrix with block rowsŤ
(i)
` has full

column rank. To this end, we define a vector

a =












aq
av
a1
a2
...

aN












(112)

and it suffices to show that the conditionŤ(i)
` a = 0, ∀i, `, is satisfied only ifa = 0. Substituting from (111) and (112) we

obtain:

Ť
(i)
` a = 0, ∀i, ` ⇒ M̌

(j)
i

(
∆t2`Gaq −∆t`av + ai

)
= 0, ∀i, `

⇒

[
C`zfi 0 −C`xfi

0 C`zfi −C`yfi

]

C
I RRi

(
∆t2`Gaq −∆t`av + ai

)
= 0, ∀i, `

The above equation indicates that:

C
I RR`

(
∆t2`Gaq −∆t`av + ai

)
∈ N

([
C`zfi 0 −C`xfi

0 C`zfi −C`yfi

])

, ∀i, ` (113)

Thus, we can write
C
I RR`

(
∆t2`Gaq −∆t`av + ai

)
= ci`

C`pi, ∀i, ` (114)

for some scalarsci`. Using (28), we obtain

∆t2`Gaq −∆t`av + ai = cij(
Gpi −

GpC`
), ∀i, ` (115)

Note that the above condition can be interpreted as a condition on the motion of the camera. For example, if the camera
is moving with a constant accelerationGaq, initial velocity av and initial positionGp0, and we chooseci` = −1, and
ai =

Gp0 −
Gpi, then the above conditions will be satisfied. However, for general camera motion, and when multiple

features are observed, the above condition cannot be met fornonzero values ofci`, aq, av, ai [26]. Thus, for general

camera motion,̌T(i)
` a = 0, ∀i, `, requiresa = 0, which shows that the matrix with block rowšT(i)

` has full column rank.
This completes the proof.

D Nullspace physical interpretation

We have shown that the nullspace of the observability matrixin the “ideal” MSCKF is of dimension 4, and is spanned by
the column vectors of the matrix in (39). If we write (39) asN = [n1 n2 n3 n4 ], then:

N
(
Ǒ
)
= span

[
n1 n2 n3 n4

]
(116)

To gain a better understanding of the physical interpretation of the basis ofN
(
Ǒ
)
, let us examine what changes in the

state each of the four vectorsni corresponds to. First, note that if, starting from an initial statex, we modify it as
x′ = x + c1n1 + c2n2 + c3n3, then the statex′ will have the same values for the IMU orientation and velocity, but the
position of the IMU and the positions of all features will be changed by the vector[c1 c2 c3]

T . Thus, the first three
columns inN correspond to shifts of the entire state vector. On the otherhand, if we rotate the state vectorx by a small
angle,c, about gravity, we can write the resulting state as

x′ =












I
Gq̄

′

Gp′

Gv′

Gp′
f1

...
Gp′

fN












=












I
Gq̄⊗ G

G′ q̄

Diag
(
G′

G R
)










Gp
Gv

Gpf1

...
GpfN





















(117)

21



where the rotation matrixG
′

G R expresses the applied rotation, andDiag(·) denotes a block diagonal matrix. To show that
n4 corresponds to rotations about gravity, we will show that the difference betweenx andx′ can be written, to a first-order
approximation, as a multiple ofn4. We start by noting that, since the rotation angle is small,G′

G R can be approximated
as:

G′

G R ' I3 − cbGḡ×c (118)

whereGḡ is the unit vector along gravity. Using this result, we can write:










Gp
Gv

Gpf1

...
GpfN










−










Gp′

Gv′

Gp′
f1

...
Gp′

fN










'










Gp
Gv

Gpf1

...
GpfN










−
(
I3 − cbGḡ×c

)










Gp
Gv

Gpf1

...
GpfN










=
c

||Gg||2












−bGp×cGg
−bGv×cGg
−bGpf1×cGg
−bGpf2×cGg

...
−bGpfN×cGg












(119)

Moreover, if we denote byδθ the orientation difference betweenx andx′ in (117), we obtain

I
G′R ' (I3 − bδθ×c)IGR (120)

= (I3 − bδθ×c)IG′R
(
I3 − cbGḡ×c

)
(121)

' I
G′R− I

G′RbIG′R
T δθ×c − cIG′RbGḡ×c (122)

From the last expression we obtainbIG′RT δθ×c = cbGḡ×c, and thus

δθ = c · IG′R
Gḡ

= c · IGRG
G′R

Gḡ

= c · IGRGḡ

=
c

||Gg||2
I
GRGg (123)

where we have used the fact thatG
G′RGḡ = Gḡ, since the rotationG

′

G R occurs about the direction of gravity. The results
of (123) and (119) show that if we apply a small rotation aboutgravity to obtainx′ from x, the difference between the
two states is given by c

||Gg||2
n4.

E Rank of the MSCKF observability matrix

In this section, we prove that the dimension of the nullspaceof the MSCKF observability matrix is 3. Similarly to the
analysis in Appendix C, we apply the same sequence of elementary column operations to transform each block row of the
observability matrix in (40) into:

O
(i)
` ∼ M

(i)
`

[

∆t2`
⌊
Gg×

⌋
+∆Γ

(i)
` 03 ∆t`I3 03 · · · I3 · · · 03

]

(124)

At this point, we see that the fourth to sixth columns of the matrix O
(i)
` are all zero, which indicates that the dimension of

the nullspace of the MSCKF observability matrix is at least three. By omitting zero columns, (124) becomes:

O
(i)
` ∼ M

(i)
`

[

∆t2`
⌊
Gg ×

⌋
+∆Γ

(i)
` ∆t`I3 03 · · · I3 · · · 03

]

= T
(i)
` (125)

To prove thatO is rank deficient by three, we need to show that the matrix withblock rowsT(i)
` has full column rank. We

start by defining:
Y

(i)
` = M

(i)
`

[
∆t`I3 03 · · · I3 · · · 03

]
(126)

The matrix with block rowsY(i)
` has full column rank, as shown in Appendix C. Next, we observethat the terms∆Γ

(i)
` ,

which appear in the first block column in the matrix (125), arerandom terms. This implies that, the three columns of this
matrix are linearly independent of the columns ofY

(i)
` . This completes the proof.
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