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Abstract

This Technical Report studies the accuracy of position estimation for groups of mobile robots performing Coop-
erative Localization (CL). We consider the case of teams comprising of possibly heterogeneous robots and provide
analytical expressions for upper bounds on the worst-case as well as the expected positioning uncertainty. These
bounds are determined as a function of the sensors’ noise covariance and the eigenvalues of the Relative Position
Measurement Graph (RPMG), i.e., the weighted directed graph which represents the network of robot-to-robot exte-
roceptive measurements. The RPMG is employed as a key element in this analysis and its properties are related to the
localization performance of the team. It is shown that for a robot group of certain size, the maximum expected rate of
uncertainty increase independenof the accuracy and number of relative position measurements and depends only
on the accuracy of the proprioceptive and orientation sensors on the robots. Additionally, the effect of changes in the
topology of the RPMG are studied and it is shown that at steady state, these reconfiguratiotisfliot any loss in
localization precision. The theoretical results are validated by simulations.

1 Introduction

This Technical Report presents a theoretical analysis of the positioning uncertainty of a team of mobile robots per-
forming Cooperative Localization (CL). We consider a group\ofobots that employs an Extended Kalman Filter

(EKF) estimator to perform CLProprioceptivemeasurements (i.e., velocity) are integrated to propagate the state esti-
mates, whileexteroceptiveneasurements (i.e., robot-to-robot relative position measurements and potentially absolute
position measurements) are processed to update these estimates. In our formulation, we assume that an upper bound
on the variance of the robots’ orientation estimates can be a priori determined. This is the case, for example, when each
robot is equipped with a heading sensor of limited accuracy (e.g., a compass [1, 2] or a sun sensor [3, 4]) that directly
measures its orientation, or if the robots infer their orientation from measurements of the structure of the environment
in their surroundings [5, 6]. The ensuing analysis holds even if only a conservative upper bound on the orientation
uncertainty can be determined, e.g., by estimating the maximum orientation error, accumulated over a certain period
of time, due to the integration of the odometric measurements [7].

We should note here that the condition for bounded orientation uncertainty is satisfied in most cases in practice. If
instead, special care is not taken and the errors in the orientation estimates of the robots are allowed to grow unbounded,
any EKF-based estimator of their position will eventually diverge [8]. Thus, the requirement for bounded orientation
errors isnotan artificially imposed assumption; it is essentiallgrarequisitefor performing EKF-based localization.

In fact, if we can determine the maximum tolerable value of the orientation variance, so that the linearization errors
are acceptably small, we can use this variance value in the derivations that follow.



The availability of an upper bound on each robot’s orientation uncertainty enables us to decouple the task of posi-
tion estimation from that of orientation estimation, for the purpose of determining upper bounds on the performance
of CL. Specifically, we formulate a state vector comprising of only the positions aithebots, and the orientation
estimates are used as inputs to the system, of which noise-corrupted observations are available. Clearly, the result-
ing EKF-based estimator is a suboptimal one, since the correlations that exist between the position and orientation
estimates of the robots are discarded. Thus, by deriving an upper bound on the covariance of the estimates produced
with this suboptimal, “position-only” estimator, we simultaneously determine an upper bound on the covariance of the
position estimates that would result from using a “full-state” EKF estimator.

Throughout this paper, we consider that all robots move constantly in a random fashion (i.e., no specific formation
is assumed [9]). At every time step, some (or all) robots record relative position measurements, and use this informa-
tion to improve the position estimates for all members of the group. During each EKF update cycle, all exteroceptive
measurements, as well as the current position estimates of the robots, must be available to the estimator [10]. There-
fore, it is assumed that a communication network exists enabling all robots to transmit such information. These can
then be fused either in a distributed scheme, or at a central fusion center.

A key element in this analysis is the Relative Position Measurement Graph (RPMG), which is defined as a graph
whose vertices represent robots in the group and its directed edges correspond to relative position measurements
(Fig. 8). That is, if robot measures the relative position of rojothe RPMG contains a directed edge from veritex
to vertex;j. In this work, we primarily consider the most challenging scenario where the absolute positions of the
robots cannot be measured or inferred. The case where global positioning information is available to at least one of
the robots in the group, is subsumed in our formulation and is treated as a special one.

2 Discrete-Time Analysis

In this section we present a discrete-time analysis of CL, and derive performance bounds that are applicable for the
covariance estimates output by the discrete-time EKF. For this analysis, we assume that both odometric and extero-
ceptive measurements are processed at the same rate. However, this not always the case, since odometric data are
commonly available at a higher rate. To address this problezantinuous-timenalysis of the time evolution of the
covariance has also been conducted, and is presented in Section 3.

2.1 Propagation Model
We consider a team oV non-holonomic robots;, -, ...,y moving in a planar environment. The discrete-time
kinematic equations for thieth robot are

zi(k+1) = xi(k) + Vi(k)6t cos(e;(k)) (1)

Yilk +1) = (k) + Vi(k)dt sin(¢i(k)) (2)
whereV; (k) denotes the robot’s translational velocity at tiln@nd ot is the sampling period. In the Kalman filter
framework, the estimates of the robot’s position are propagated using the measurements of the robot's¥glogity,
and the estimates of the robot’s orientatigg):

Finoin = By + Vin, (k)5 cos(i(k)

yik+1‘k = :’Qik‘k + ‘/'Hqu (k)ét Sln(él(k))

Clearly, these equations are time varying and nonlinear due to the dependence on the robot'’s orientation. By linearizing
Egs. (1) and (2), the error propagation equation for the robot'’s position is readily derived:

[ Tip 1 ] 7 { 1 0 ] [ Tirh } N [ 5t cos(i(k)) =V, (k)3t sin(e; (k)) } { wy; (k) }
0 L0 1] w 5tsin(gi(k)) Vi, (k)0 cos(¢i(k)) bi(k)
& Xi,ﬂ_uk = Dby X, + Gi(k) Wi (k) ©))

Yirs1in Yirn

TR-2003-0002 2



wheré wy; (k) is a zero-mean white Gaussian noise sequence of vam'é)gpeﬁecting the velocity measurements and

51 is the error in the robot’s orientation estimate at tilneThis is modeled as a zero-mean white Gaussian noise
sequence of variance; .
From Eq. (3), we deduce that the covariance matrix of the system noise affectinthth@bot is:

Qitk) = E{Gik)W;k)W] 1G] (k)}
= GiE{W;mW] ®)}GT (k)

{&cos(a%(k)) — Vi, (k)5 0 (3 (k) H 0 Hétcos(@ *)  —Vim, k)étsm(éz )]
p v !

T

otsin(g;(k)) Vi, (k)0 cos(gz§ K)) 0 St sin(o;(k)) K)ot cos( ¢A (k)
_ { cos(qgi(k)) fsm(gbl )) ] [ St v 0 } { cos(qﬁi(k)) —dtsin cz; }T
; Sin(éi(k)) COS(¢z k)) 0 5752‘/%1-(’“)03, Sin(qgi(k)) dt cos( q§
~ 5t20‘2/_ 0 T/,
= C(ei(k)) { 0 s2v2 (K)o, } C™ (¢i(k)) (4)

WhereC(é,;) denotes the rotation matrix associated V\ii;h
Using these results we can now write the error propagation equations for the entire system, comphisiolgais:

[ Wy (k) ]

k

Gi(k) O2x2 -+ O2x2 f‘i((;)

~ - O2x2  Ga(k) -+ Oaxo b
Xiv1g = lanxanXpg + N P2 (k)

0252 Gn (k) wvl )

L on(k)
S Xppp = B0 X + G (k) W (k) (5)

where we have defined the state vector of the entire system as the stacked vector comprising of the positions of all the
robots:

X1
Xo
X = )
XN
The covariance matrix of the system noise is given by
Qw = B{G:mWmW' (G ()}

E{G1 (k)W (k >W1 (WGT (k)} - 0252
I 0252 o E{GNRWNE AW ()G (k)}
[ Qi) -+ D22
| O2x2 -+ Qn(K)
= Diag(Qi(k)) (6)
Thus the equation for propagating the covariance matrix of the state error is written as
Pk = Py + Q(k) (1)

whereP ), = E{X,WW,CX,€+1 o andPy, = E{Xk‘ka‘k} are the covariance of the error in the estimate of
X (k+1)and X (k) respectively, a her measurements up to tireave been processed.

1Throughout this documen@,,, x , denotes then x n matrix of zeros1,, x denotes then x n matrix of ones,I,, x, denotes the: x n
identity matrix, andDiag(-) denotes a block diagonal matrix.
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2.2 Exteroceptive Measurement Model
2.2.1 Relative Position Measurements

At every time step, the robots perform robot-to-robot relative position measurements. Assuming thatpebiorms

M; relative position measurements at each time step, we dendt€ by{ry,r2,--- ,rn} \ {r;} the subset of robots
and observed by robeét We denote byf;; the target of thg-th measurement performed by robgti.e.,
T;; € N;

where the indey in assumes integer values in the rafigel/;] to describe thé/; relative position measurements of
robotr;.
With this notation, the relative position measurement between repatsd’;; is given by:
Zij(k+1) = CT(i(k + 1) (X, (b +1) = Xi(k + 1)) + 1z (b +1) (8)
By linearizing the last expression, the measurement error equation is obtained:
Zij(k+1) = 25 (k+1) — Zi5(k+1)

= CT(gi(k +1)) (J?Tij e — Xi k+1|k) — CT ik +1))J (XTij ob1e X; k+1\k> Gilk +1) + Ny, (k+1)

Xi
T (ier 1) [ Osso ... —Iogo ... Inyo ... Ooxo ] _
T Tij ~
Xr,,
R
T/ 1 A n’Zir'(k—"_l)
+ [ Iy —CP(@i(k+1))JApyj } [ (Eij(k—i-l)
= H;j(k+ 1))?k+1\lc + Lk + Dngj(k + 1) 9)
where
0 -1 —~ ; ;
J = [ 1 0 :| ) Apijk_,_l‘k = XTzij kt1lk _Xh' k1lk
and we note that the measurement matrix for this relative position measurement can be written as
R 0 —1I oo I ... 0 .
Hij(k+1) = CT(itk +1) [ BN e ] = CT($itk+1)H,,  (10)
T Ti]'

At each time instant robatrecordsi/; relative position measurements, described by the measurement Fatrix- 1),
i.e., a matrix whose block rows afé;;(k+ 1), j = 1... M;:

CT(¢i(k +1))Ho,,y

CT($ik+1))Hy,,

H;k+1) = k+1)H,, (12)

CT(Qg7(k + 1))H0L'Mi
in the last expressiofl ,,, is a constant matrix whose block rows dfg,;, j = 1... M;, and

Z5, (k+1) = Ingonr, ® C(ilk+ 1)) (12)

with ® denoting the Kronecker matrix product. The covariance for the error of-themeasurement of robatis
given by
‘Rjjk+1) = Dyjtk+1DE{n;k+10n]k+ DTk +1)
= R.;(k+1)+Rj (k+1) (13)

J
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This expression encapsulates all sources of noise and uncertainty that contribute to the measuremgi errpr
More specifically,i2., (k + 1) is the covariance of the noisg; (« + 1) in the recorded relative position measurement
zij(k+1) andR(z;M (k +1) is the additional covariance term due to the etsgr + 1) in the orientation estimate of the
measuring robot. This is given by:

~ — ~2 —~T ~
Ry (k+1) = CH(ik+1)JApy, ., E{di YApy, ., I C(di(k+1)
~ — —~T ~
= 05, CT(0iltk+1)JBpy, ,, Apy, I C(Pilk+1)) (14)

From this expression we conclude that the uncertaj‘@;yn the orientation estimatg; (k + 1) of the robot is amplified
by the distance between the two robots. '

Each relative position measurement is comprised of the disignead bearing;; to the target, expressed in the
measuring robot’s local coordinate frame, i.e.,

Pij (k + 1) CcOS 91']' (k + 1)
Pij (k + 1) sin Gij (k + 1)

Zij(k—i-l) = l: +nz,ij(k+1)
By linearizing, the noise in this measurement can be expressed as:

cosl;; —pijsinb;; Np.; (k+1)
sin Gij ﬁij COS 9”- n&;j (k+1)

nzu (k'"' 1) = [

wheren,, . is the error in the range measuremen,, is the error in the bearing measurement, assumed to be inde-
pendent white zero-mean Gaussian sequences, and

—~T —~
2
Pij = Apijk+1|kApijk+1\k

0;; = AtanQ(Ayinl‘k,Axijkﬂ‘k)—qgi(kJrl)

are the estimates of the range and bearing to repatxpressed with respect to the robot’s coordinate frame. At this
point we note that

[ cosi(k+1) —sind;(k+1)
| sin qgi(k +1) cos d;,;(k +1)

i COS((éi(k +1)+ é”) _ﬁij sin(éi(k +1) +A9Aij) :| |: ure (k+1)
| sin(@i(k+1) +0;5)  pijcos(i(k +1) + 045) ng,,; (k+1)

— [ 2Ap. JAp. || MeutktD
= | Ay JAp; ] { n,, (k + 1)

Np,,; (k+1)

C(éi(kﬂ))nzij(kﬂ) = { Coseij P Smﬁij } ng,. (k+1)

sin Hij [)'L'j COS 91]

and therefore the quantity.  (x + 1) can be written as:

R. (k+1) = BE{n. (k+1nl (+1)}

_ - - 7T - T
ﬁ,lijApij JAp,, }E{ { My, } { My } } [ ﬁij pi;  JAp;; } C(di(k+1))

Ny,

—~ —~ 2 — —~ T .
ﬁlﬂApij JAp;; ] [ 61‘ 2 ] [ ﬁ%jApij JAp;; ] C(pi(k+1))

g, —~ T — T ~
ﬁg Ap,;;Ap;; + o5, JApijApij‘]T> C(gi(k+1))
i

7

<

o2 —~ T T .

= CT(gitk+1) < o (ﬁfjfm — JApijApijJT) +UgiJApijApijJT> C(ps(k +1))

2 1 > %\ R AT 06, 15

O_pi ox2 + 0—91. [)2 pz] pz] (¢l(k+1)) ( )
)
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where the variance of the noise in the distance and bearing measurements is given by
= E{ni} , Ugi = E{ng}

respectively. Due to the existence of the error component attributég(tor 1), the exteroceptive measurements
that each robot performs at a given time instant are correlated. The matrix of correlation between the errors in the
measurements;; (k + 1) andz;e(k + 1) is

‘Rietk+1) = TyE{ngk+1nkk+ 1)L
~ — —~T ~
— afﬁicT(@(k T 1))JApijk+”kApMk+mJTc(qsi(k +1)) (16)

The covariance matrix of all the measurements performed by ficdtdhe time instant + 1 can now be computed.
This is a block matrix whosewn-th 2 x 2 submatrix element iéR,,,,,, for m,n = 1...M;. Using the results of
Egs. (14), (15), and (16), this matrix can be written as

Ri(k+1) =E; (k+1)Ro,(k+ )E 3 (k+1) a7)
where
o2 — T
o2 Iaxa + <0§>i + op, p" ) JApﬂAp”J 03, JAp; Appy JT
RO{, (k + 1) = :
—~ —~T 2
U;iJApiMiApile O'E,ilgxg + <a¢ + 09 ” ) JAle Ap,M JT
2
_ 2 ) 2 2 9p T
= 0,, oy xons; + Di(k+1) | 09, Iv;x v, + 04, 1, x v, — diag p D; (k+1)
o2
2 Pij T T 2 T
:inI2Mi><2M D; (k+1)dlag( p ) D; (k+1)+09 D;(k+1)D; (kJr1)l+g'¢,iDi(k+1)1M,;><M,;Di (k+1)}
~ Ro(k+1) Ry(k+1)
(18)
where e
JApilkﬂ\k . 02><1
Dik+1)= : : = Diag (JApinHk)
02><1 o JAp”\/[

ik+1|k
is a2M; x M; block diagonal matrix, depending on the estimated positions of the robots. In Eq. (18) the covariance
term Ry (k + 1) is the covariance of the error due to the noise in the range measurerfigfits; 1) is the covariance
term due to the error in the bearing measurementsfand+ 1) is the covariance term due to the error in the orienta-
tion estimates of the robot. The measurement madrix + 1) describing the measurements that are performed by all
the robots of the team at time step+ 1 is a matrix with block rowsH ;(k +1),i =1... M, i.e.,

T

E? (k+1)H,, H,,
B, (k+ ) H,, H,, T
Hk +1) = — Diag ( C (k+ 1)) ” | =="k+1H, (19)
EgM (k + 1)H on H,,
where
E(k+1) = Diag (E (k4 1)) (20)

is a block diagonal matrix with block eIemerEsr (k+1),fori=1... M, andH, is a matrix with block rowsH ,,,
i = 1...M. Since the measurements performed by different robots are independent, the measurement covariance
matrix for the entire system is given by

R(k+1) = Diag (R;(k+ 1)) = Dlag( " R, (k+ 1S ¢) — =Tk + DRy (k + DE( +1) 1)

whereR,, is a block diagonal matrix with block elemenf&,,, i =1... N.

TR-2003-0002 6



2.2.2 Absolute Position Measurements

If, in addition to relative position measurements, any of the robots, e.g., fobais access to absolute positioning
information, such as GPS measurements or from a map of the area, the corresponding submatrix eliment of
is:

H, =

R
[ 02x2 2%2 022 ] 22)

14

while R,,,, the covariance of the absolute position measurement, is a constant provided by the specifications of the
absolute positioning sensor.

To account for the absolute position measurements, the nfdyrix Eq. (19) is augmented by simply appending
the appropriate block ronHl ,,, while R,, is augmented by appending the matri¢gs on the diagonal, yielding

Diag (R, (k+1)) 0 ]
Ro(k+1) = ' . 23
( ) 0 Diag (R,,) (23)
Additionally, in this case, the matr&” (x + 1) is also augmented as follows:
S(kt1) = Diag ( (ke + 1)) 0 (24)
0 Ion, x2M,

where we have assumed thid}, absolute position measurements are available to the robots of the team.

2.2.3 Covariance update equation
We now write the covariance update equation, which is
-1

Priijptt = Pryip — Prarpe H (+ 1) (Hk + DPpaq e H (kD) + Rk + 1) Hk+ )Py

= Pk:+1\k

—1
— Py HE Bk +1 (E (k+ DHPp HIBR + 1) + B (k + DR,k + DE(k + 1)) 2 (k+ DHP i
T

“1
=Piiip — PropHY (HoPp b HE + Rok+1) HoPp, (25)

In order to derive the last expression, prop&ty(x + 1) = 2~ (k + 1) was employed. This property is a consequence
of the definition of matriX&(k + 1) (cf. Egs. (12) and (20) or (24)), and the fact that rotation matrices sﬂ%{yﬁ )=

()

2.3 The Riccati Recursion

The metric we employ in order to characterize the positioning performance of CL is the covariance matrix of the robots’
position estimates. By combining Eqgs. (7) and (25) we derive the discrete-time Riccati recursion, that describes the
time evolution of the covariance matrix:

“1
Priopt1 = Prip — PryrpHE (HoPp b HD + Ro(k+ 1)) HoPppqp + Qk+ 1)

This recursion provides the value of the covariance matrix at each time step, right after the propagation phase of the
EKF. To simplify the notation, we s®; = P, andPy,1 = Py 541, and therefore we can write

Py = Pp,—PH! (HPH! + R,k + 1))71 H, P, +Qk+1) (26)

We note that the matriceQ(k + 1) andR,(k + 1) in this Riccati recursion are time varying, and this does not allow
the derivation of any closed form expressions for the time evolutidd,gfin the general case. We therefore have to
resort to derivindpoundsfor the covariance of the CL position estimates. The following two lemmas are the basis of
our analysis:

TR-2003-0002 7



Lemma 2.1 If R, andQ, are matrices such thak, = R,(k) andQ, = Q(k) for all k¥ > 0, then the solution to
the Riccati recursion

u u u u -1 u
v, = Py—-PyH! (H,P/H! +R,) H/P} +Q. (27)
with the initial conditionP§ = Py, satisfiesP} > P, for all £ > 0.

Lemma 2.2 If R andQ are matrices such thd® = E{R,(k)} andQ = {Q(k)} for all k£ > 0, then the solution to
the Riccati recursion

Py, = P,-P.H! (HPH!+R) HP\+Q (28)
with the initial conditionP, = Py, satisfiesP;, = E{P;} forall k > 0.

Essentially, Lemma 2.1 maintains that in order to derive an upper bound wthecaseovariance matrix of the
position estimates in CL, it suffices to derivpper bound$or the covariance matrices of the system and measurement
noise, and to solve eonstant coefficierRiccati recursion. Similarly, Lemma 2.2 states that an upper bound on the
expectegbositioning uncertainty of CL is determined as the solution of a constant coefficient Riccati recursion, where
the covariance matrices of the system and measurement noise have been replaced by their mspacievalues.

The proofs for these lemmas are given in Appendices A and B respectively. In the remainder of this section, we derive
appropriate upper bounds, as well as the average values of the m&rigeendR,, (k) respectively.

e Derivation of upper bounds for Q(¢) and R, (¢)

In order to derive an upper bound for the covariance ma&ix) we recall thaiQ (k) = Diag(Q;(k)), where

5?0, 0

e A, 7 T A,

From the properties of rotation matrices it is known tljhtl(g?u(k)) = C’T(qgi(k)), and thusQ); (k) is related by a
similarity transformation to the matrix
6t20‘2/i 0
T e, |

which implies that the eigenvalues @f (k) aredt*sy, anddt>V,. (ko . We assume that the velocity of each robot
is approximately constant, and equalfg and denote

i = max (6t°0y, , 6t°V2 (k)ail) ~ max (6t°07, , 6t2Vi20§)i) (29)
This definition states tha is the largest eigenvalue 6f;(k), and therefore

Qi(k) = qilax2 = Q(k) = Diag(gilax2) = Qu (30)

An upper bound oR, (k) is obtained by considering each if its block diagonal elemeRis(k). Referring to
Eq. (18), we examine the ternds, (k) , Ro(k) and Rs(k) separately: the term expressing the effect of the noise in the
range measurements is

2

2 . Tpi T 2
Ri(k) = O'piIQMix2Mi — D;(k)diag <[)2 > Dl (k) =X O'pilgjy[ingi (31)
ij

The last matrix inequality follows from the fact that the term being subtracted &rﬁgmMingi is a positive semi-
definite matrix. The covariance term due to the noise in the bearing measurement is

Ry(k) = o0 Di(k)D] (k)

sin® (65) sin(6;;) cos(05) ] )

2 e .2
— D 2. X
96,138 (p” [ sin(;;) cos(6;5) cos?(6;;)
o;, Diag (7, I2x2)

PPN

UgiP2]2Mi><2Mi (32)
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wherep, is the maximum range at which a measurement can occur, determined either by the characteristics of the ro-
bots’ sensors or by the properties of the area in which the robots move. Finally, the covariance term due to the error in
the orientation of the measuring robotlig (k) = % D;(k)1s, 5 01, DI (k). Calculation of the eigenvalues of the ma-

trices s, « ar, @andIng, « as, Verifies thatl ar, « v, = M;iIng, < ar,, @nd thus we can writ®s (k) < Miaii D;(k)DT (k).
By derivations analogous to those employed to yield an upper bourig:{ey, we can show that

Rs(k) = Mo, pilan, xam,
By combining this result with those of Egs. (31), (32), we can wRig (k) = Ry (k) + Ra(k) + Rs(k) < R¥, where

R} = (037: + Migiipg + 0.p2) Loty xant, = Tilons, xon, (33)
with
ri = 02, + Myo3, p2 + 03,02 (34)
Thus, we can write
R, (k) = Diag(R,,(k)) < Diag(riIn,xn;) = Ru (35)

e Derivation of the Expected Values ofQ (k) and R, (k)

In order to derive the average value@fk) we note that

. 5%l 0 .
Q= Com [ T s | CTw)

52 o, cos 2(dy) + V2 (k (k) O’¢ sin?(g; ) ( 2 -V (kz)oi ) sin(¢;) cos(¢;)
(o2, - V2, (k)%) sin(di) cos(di) o3, sin(d) + V2, (002, cos ()

and therefore, by averaging over all values of orientation, the expected valyexois derived:

+ Vo
E{Qik)} = 5f2%12x2 = qilaxa
where ) ) s
3 = o0t? v+ Vo5,
2
Thus,
E{Q)} = Diag(E{Qi(x)}) = Diag(gilax2) = Q (36)
The average value @&, (k) is derived by employing the property
E{R,(k)} = E{Diag(R,,(k))} = Diag(E{R,,(k)}) (37)

We therefore see that the average values of the matRge®), « = 1... N need to be determined. From Eq. (18) we

note that evaluation of the average valueRy, (k) requires the computation of the expected values of the following

terms:

Ap” Apm
py

for y,é =1...M;. The average value df; is easily derived by employing the polar coordinate description of the

vectorApU in terms ofp;; andew, which yields

—~ T —~  ~T
Ty = Ap;;Ap;j, and Ts = Ap,;;Ap;, (38)

1=

Ap;; j A:Dz j

p'LJ
P2 cos?(6;;) P2 sin(55) cos(65) ]

T =
1
P3| A3 sin(0iy) cos(6:;) Pz sin®(0;5)

_ [ cosQ(é )A sin(éij)cE)s(éij)}
bin(@ i) cos(6;5) sin’(0;5)
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From the last expression we conclude that for any probability density function that guarantees a uniform distribution
for the bearing angle of the measurements (i.e., any symmetric probability density function), the average value of the
term7T} is

1
E{T\} = ifzxz

In order to compute the expected value of the te¥inand7;, we assume that the robots are located in a square arena
of sidec, and that their positions are described by uniformly distributed random variables in the ifteryal «/2].
—~2 o~ e~
Axij Al'ij Ayij
—2

We can thus write
Ayij Awij Ayij }

E{a? — 2xix; + o7} E{zjy; — xjyi — xiy; + viyi}
| Elyjrj — yimi — yirj + yivi} E{y} — 2y;v: + v}
[ 2E{x? 0 ]
0 2B{y}

C o 0
:62
e

B{Ty} = BE{Rp;Ap,;} = E{ [

and similarly,

—~ T
E{Ts} = E{Ap;;Api} = E{

Ayiijié AyijAin
[ Elxjaey — wiwe — xjw + 27} E{ajye — xjy — viye + 2iyi}
| E{yjze — yimi — yiwe +viwi b E{yjye — yive — yivi + yi}
_ [ E{=}} 0 ]
0 E{y}

2
_ | 0

a”

0

2
12

«
= —I
12 2x2

These results enable us to obtain the average value of the md®jces, : = 1... N. Employing the linearity of the
expectation operator we obtain

Ri = E{Roi (k)}

1.2 1.2 1.2 1 2
(2001+60¢i+609i)12><2 120¢i12><2

1 2 1.2 1.2 1.2
ﬁ0¢i[2><2 e (50’1)7’ + EO—¢1 + 6001) I2><2

1 1 1 1
<2037¢ + ﬁdii + 6031) Ions, xon, + ﬁaéi (Las, xm, @ Iax2)

The average value @&, (k) is therefore

R = E{R,(} — Diag(R)) (39)

2.4 Evaluation of the Upper Bounds at Steady State

Lemmas 2.1 and 2.2 allow the evaluation of upper bounds on the worst case uncertainty and on the average uncertainty
of the position estimates in CL, ahytime instant after the deployment of the robot team. This can be achieved, for
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example, by numerical evaluation of the solution to the recursions in Egs. (27) and (28) respectively. For many
applications, it is of interest however, to study the steady-state behavior of the positioning uncertainty in CL. For this
reason, we now derive the steady-state values of the solutions to the recursions (27) and (28). By "steady-state values”
we refer to the values of the covariance matrix after a sufficient time has elapsed, enough for the the initial transient
phenomena in the solutions to subside. The steady state solutions are derived by evaluating th®}iraitaiP;, as

k — oo.

We note at this point that the Riccati recursions of Eqgs. (27) and (28) essentially describe the time evolution of
the covariance of the position estimates in two hypothetical CL scenarios, where the system model is a Linear Time
Invariant (LTI) one. Therefore, the problem of computing the upper bounds on the steady state positioning uncertainty
in CL reduces to the problem determining the steady state covariance matrix for a LTI CL system model

To avoid redundant derivations, in the following we will solve for the steady state solution of the following Riccati
recursion:

-1

i = Py-P;H (H,P;H] +R,) H,P;+Q, (40)

After deriving the steady state solution of this recursion, we employ the substitutions
R; — R, Qs — Qu

and _ _
RS_)R7 QS_)Q

in order to obtain the steady state solutions of the Riccati recursions of Lemmas (2.1) and (2.2) respectively.
We first note that the Riccati recursion in Eq. (40) can be reformulated as follows, by use of the matrix inversion
lemma (cf. Appendix H):

P, = Pj-PiHI (HP{H] +R,) HP;+Q,
= P (Lo + HIR;H,PS) '+ Q. (41)
The derivations are simplified by defining thermalizedcovariance matrix as
P, = Q'?PiQ;'? (42)

Pre- and post-multiplying Eq. (41) @;1/2, and simple algebraic manipulation yields

P,.., =P, (lanxon + CoPry) ' + Loy (43)

where
C, = QY/*H!R;'H, Q.

Note that the only parameter in the Riccati recursion (43) is the m@uixwhich contains the main parameters that
characterize the localization performance of the robotic team. The eigenvalues of this matrix, which are studied in
Appendix E, are in close relation with the type and number of exteroceptive measurements recorded by the robots
of the team, and determine the properties of the upper bound on the steady-state positioning uncertainty. To further
simplify the derivations, we denote the Singular Value Decomposition (SVI0),cds

C, = U, diag(\;)UT = U,AUT

and substituting in Eq. (43) we obt&in

P, P, (I+UAUTP,)  +1=
u’P,,, U, = UP, UUT (I+UAU'P,,) U, +I=
U'P,,, U, = UTP, U, (I+AUTP,, U,) " +I

2To make the notation less cumbersome, we hereafter omit the dimension index from the identity matrices, whenever their dimension is equal
to the dimension of the state covariance matrix. l.e., from this poinf ea,/5n 2N -
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We define
P.. = U'P, U, (44)
and we obtain the recursion
Ponei = Punpss [+ AP,)  +1 (45)

This form of the recursion is simpler, since now the only parameter is the diagonal matrix of the eigenv&lyes of
We hereafter present the derivation of the steady-state solutidd,for, ,, based on the availability of absolute
positioning information:

2.4.1 Observable system

We first study the case in which at least one of the robots has access to absolute position measurements. In this case
the system is observable [10], and therefore the covariance of the robot’s position estimates remains bounded at steady
state. For this case, it is shown in Appendix E thaik(C,) = 2N, and therefore all the singular values©f are
positive.

Since we are dealing with an observable system, the solution to Eq. (45) will converge to a constant value at steady
state, determined by solving the Discrete Algebraic Riccati Equation (DARE):

Pnnss = Pnnss (I + AP”"ss)_l + I

Since the system is both controllable and observable, the solution of the above DARE is unique [11]. Therefore, we
can "guess” a solution, and if it satisfies the DARE, we can be assured that this is the only possible solution. We now
assume a diagonal form f&t,,,__. In that case, all the matrices in the above DARE are diagonal, and thus we obtain
the following set o2V independent equations:

Ppn,, (i,1) :
2 (151) Tiab, b (46)
Whose solution is given by
1 1 1
Pnn‘ ., ) = 3 - ~
s (4 8) s tVIt

By substitution of this result in Egs. (44) and (42), we obtain the steady state solution to the Riccati recursion (40):

1 1 1
P, = Q;/QUS diag (2 + \/:) UZQi/Q a7)
3

Finally, from this result, by setting
RS - Ruv QS - Qu

and

we can derive the following lemmas:

Lemma 2.3 The steady state covariance of the position estimates for a team of robots performing CL, when at least
one robot has access to absolute positioning information is bounded above by the matrix

1 1 1
P!, = QY?U,diag (2 + 1 + )\) ulqQl/? (48)

where we have denoted the singular value decompositi@h,of= Q}/QHZR;lHOQf/Q as C, = U, diag(\,,) UL

e
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Lemma 2.4 The expected steady state covariance of the position estimates for a team of robots performing CL, when
at least one robot has access to absolute positioning information is bounded above by the matrix

_ o 1 T 1\ mypn
P, = Q1/2Udiag(2+1/4+/\_) urQl/? (49)

where we have denoted the singular value decompositiad ef Q'/?HIR~'H,Q!/? as C = U diag()\;)U”.

At this point we should note that the upper bounds on the steady-state uncertainty depend on the topology of the
RPMG and the accuracy of the proprioceptive and exteroceptive sensors of the robots. However, the steady-state uncer-
tainty is independent of the initial covariance of the robots, which comes as no surprise, since the system is observable.

2.4.2 Unobservable System

If none of the robots has access to absolute position measurements, the system is unobservable from a Control The-
oretic point of view. In Appendix E it is shown that in this caseikk(C;) = 2N — 2, which implies thatC; has
two singular values equal to zero. This fact somewhat complicates the derivations, as now the steady-state solution to
Eq. (45) depends on the initial uncertainty of the robots’ position estimates.

We first consider the situation in which the initial covariance matrix is equal to zeroPpe= Oy xon. We
denote the solution to Eq. (45) lfyﬁf),%k in this case, and it is easy to see tﬁ’éﬁo = 02 x2n. As aresult, fork = 0
the right-hand side of Eq. (45) is a diagonal matrix. By a simple induction argument, we can show that the solution
to this recursion with zero initial condition retains a diagonal form forkalt 0. Addressing each of the diagonal
elements individually, we observe that for the f28f — 2 elements, which correspond to the nonzero singular values,
we obtain the recursions

NNk4+1 nng nng

—1
PO (i,i)=PO (i) (1 +APO (i,z’)) 41, i=1..2N -2 (50)

while for the last two diagonal elements we obtain

PO (i,i) =P (ii)+1, i=2N—-1,2N

NNk 41 nng

The steady-state solution for the fiesV — 2 elements is derived by solviilgV — 2 independent scalar equations of
the form

P%OTZ ..
P%“(i,i) = #Jﬂ,i: 1...2N (51)
- 1+ X\Pon., (4,7)

which have the same structure as in Eq. (46) (the eigenvaluet, in general, be different). Therefore the asymptotic
solution forP,,,, is given by

i 1 1 1
P%OTEM(IC) _ l diagyn_o (§ +4/zT Ti) O Nn_2)x2 1 (52)
02X(2N—2) klyxo

From the last expression we see that when the initial valuPfor, is equal to zero, at steady state the rate of increase
of the matrixP,,,,, is given by

D=PO (4+1)—PO )= [ Oen-2)x@@n-2) O@n—_2)x2 ]
Tifbas Tihas O2x (2N —2) Iryo

Since Eq. (45) describes the time evolution of the covariance in a LTI system, we do not expats tiéncrease at
steady state to depend on the initial conditions. With this in mind, we will now introduce a change of variables, that
will facilitate the derivation of the steady state solution of Eq. (45) for arbitrary initial conditions. We set

P,.. = P,+kD (53)
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and substitution in Eq. (45) yields

Pip1 + (k+1)D (f’k+kD) (1+A(f>k+kD))71+1;x

~ ~ ~ 1
Pisi+(k+1)D = Pk+kD)<I+APk+kAD) +1=

N

Pri+(k+1)D = (ﬁk +kD> (I+A1~3k>_l T

P,+(k+1)D = f’k<I+Al5k) 1+kD(I+Af’k)_1+I

Where we have used the fact that since the 2 smallest eigenvalégsexjual zero, we havAD = Oy x2on. By
application of the matrix inversion lemma in the second term of the last expression we obtain

P, + (k+1)D

P, (I+A1~3k)71 +kD (I—A (I+f’kA)1f’k) Ty SN

~ ~ ~ 1
P+ (k+1)D = Pk<I+APk) T kD 41

where the resulAD = 0,y <2y has been employed once more. Finally, from the last expression we obtain
~ ~ ~ —1
P = P (I—f—APk) +I-D=

~ ~ ~ 1
P = Py (I—i—APk) +D (54)

where
D -7-D~— {I(QN—2)><(2N—2) 0(2N—2)><2:|
025 (2N —2) O2x2

Our objective now is to determine the steady-state solution of the Riccati recursion (54), for any initial covariance
matrix Py. For this purpose we employ the following result, which is proven in [11] (Section 8.6, Lemmas 8.6.2 and
8.6.3):

Lemma 2.5 SupposeP]EO) is the solution to the discrete-time Riccati recursion

Poi1 = FP.FT + GQGT — (FP.HT + GS)(HP,H' + R)"Y(FP.H" + GS)T, (55)
with initial value P, = 0. Then the solution to the Riccati recursion with the sgeG, H} and{Q, R, S} matrices,
but with an arbitrary initial conditionlI, is defined by the identity

—1
Pepr — PO, = 0Ok +1,0) (I + Hoo,go)) To®® (k + 1,0)”
whered'” (k + 1,0) is given by

OO (k +1,0) = (F — K,H) ' (I + PJya)

and .
(9;(C )= Jen

In these expressions is any solution to the Discrete Algebraic Riccati Equation (DARE)
P=FPFT + GQGT — (FPH" + GS)(HPH" + R)"Y(FPH" + GS)7,

K, = (FPHT + GS) (R+ HPHT)™" and J, denotes the solution to thaial Riccati recursion with zero initial
condition, which, in the casg = 0, is written as

Jyy1 = FLFT + H'R'H - FT ,G(Q ' + GT JL,G) ' F, Jy=0
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To apply this lemma, we first reformulate Eq. (54) as follows:

Pi = Py(1+AB) +D'=
B = Py (1+VA(VAR)) +D'=
Po — B, (z + VA (1+VABVA) mﬁk) iD=
Pii = Pt PA(1+VAPWA) VAP, + D/
wherev/A = diag (v/A;). Introducing the substitutions

~ Ton— _
P, —P,, G—G= [ (2(])\;:();]\;2_1; 2)] . Qe Ion_gyxen-2, Ho VA Re I, Se 0y0n40

allows us to specialize Lemma 2.5 to our problem as follows:

Lemma 2.6 Suppos@éo) is the solution to the Riccati recursion

~ ~ ~ 1

P = Py (I + APk> +D (56)
~ ~ ~ -1 ~

= Py+PiVA (I + \/KPk\/K) VAP, + D’ (57)

with zero initial condition. Then the solution to this recursion when the initial covariance matrix is an arbitrary
positive semidefinite matri®, is defined by the relation

= (0) o) 5 IO, T
Piit — P, = 0Ok +1,0) (I n POJkH) Pod® (k +1,0) (58)
where
1 k+1
O (k +1,0) = (1 - PVA (1 + \FAP\FA) \/K> (I+PJpy1) (59)

In these expressio is any solution to the Discrete Algebraic Riccati Equation (DARE)

P:P—P\ﬂ(IJr\fAP\/K)il VAP 4+ D' (60)

andJ; denotes the solution to thlkial Riccati recursion with zero initial condition:

-1
Jis1 =T + A= JiG (Ion_a)xen—2) + GTIG)  G'Ji, Jo=0anxan (61)

We now apply this lemma to derive the steady-state vali,ofvhen the initial covariance or the robots’ position
estimates is an arbitrary positive semidefinite maRjx in which case we have

Py = P,,,—0-D = U!P, U, = UI'Q;'?PyQ;'/*U, (62)

In the following, we seek to derive the steady-state solutioR pfand therefore we will evaluate the results of
Lemma 2.6 after sufficient time, i.e., As— oo. We first note that the steady-state solution to the recursion in Eq. (57)
with zero initial condition can be directly derived by the definitiorRaf in Eq. (53):

POw = P4 (k) —kD
_ diagyn_o (% + % + /\i) O an—2)x2 1 _ D
O2x (2N —2) klaxo
_ l diagyn_o (% +4/5+ )\i) 0@ 2n—2)x2 ] (63)
025 (2n—2) 022
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Substitution off’gg) for P in Eq. (60) verifies thaﬁgg) is a solution of the DARE, and therefore we have

" " 1 k+1 .
O (k+1,0) = (I—Pg‘?\/K(H\/KPg‘;)\/K) \/K> (1+P§2>Jk+1)

(I + ﬁggm) e (I + f»gg>.1k+1)

_ (k1)
- l diegan—z (1 * % + iy + A%) Dean-x2 ] <I + f’(o)Jk+1) (64)
O2x (2N —-2) Iyxo

where we have applied the matrix inversion lemma to simplify the expression.

The next step is to derive the solution of the dual Riccati recursion (6%)-asoc. Note that since the initial
condition of this recursion is zero, at= 0 the right hand side of Eq. (61) is a diagonal matrix. By induction, it is
simple to show thafl;, will retain its diagonal structure for akt > 0, and therefore the solution to the recursion is
obtained by solving a set of independent scalar recursions, for the diagonal eldp@nts,« = 1...2N. These
recursions are given by

Jy(i,4)?

Jep(ii) = Jk(lﬂ)"‘/\i—m,

i=1...2N -2 (65)

while the elementd; (2N — 1,2N — 1) andJ; (2N, 2N ) remain equal to zero for all time. By evaluating the steady
state solution of these recursions (i.e., by requiring dhat; (4,7) = Jx (i, ), and solving the resulting equations) we
obtain the following solution fod;, at steady state:

. s A2
3. - diags o <2 +\/ G+ Ai) 02N —2)x2 (66)

O2x (2N —2) O2x2

We can now compute the steady-state value of the quabﬁ))(k +1,0). From Eq. (64) we obtain

—(k+1)
. i 1 1 -
lim [ diagsn_o (1 + 9+ /\i\/ZTAT,) O N —2)x2 ] (I + Psqs)Jk-S-l)

lim ®)(k+1
¢, ok 1L0)

koo O2x (2N —2) Irxo
. : X o) Y
l limy,_, oo diagyy_o (1 + 5+ Aiy/7 + y) O0n—2)x2 (I + ﬁgg)Jss)
O2x (2N —2) Iyyo
Oen—_2)x(2n—2) O@n_2)x2 } ( 5(0)
I+P J)
[ O2x (2n—2) Iryo s
Where we have used the fact that
—(k41)
\i I 1 , i T 1
1+ 24 ay/-+—)>1=1 T+ 24 My + — =0
<+2+ 4:4—)\l_>> kirgo(+2+ 4+)\¢
Furthermore, substitution fap Y andJ,, from Egs. (63) and (66), yields
lim O (k+1,0) — { Oen—2)x@2n—2) O@n_2)x2 ] -D
k—oo P ’ O2x (28 —2) Iyxo
Using this result, Eq. (58) yields
. = (0 . g -1~
Jim (Pk:-i-l - PI(CJZ1) = [lim (‘I);()O)(k? +1,0) (I + PoJk+1) Pod{Y (k + 170)T)

D (1+ ﬁons)_l P D"
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and therefore
~ ~ ~ ~ -1 -
P, = lim Pyj1 =P +D (I + POJSS> P,D”

This result allows us to evaluate the steady-state solution of Eq. (41), for the case when none of the robots has access
to absolute position information. Using Eq. (53), we obtain

~ ~ 1 -
P,..=P% 4D (I n POJSS) P,D7 + kD

and substitution in Eq. (44) yields

~ ~ 1
P, =U, <ng> +D (I n POJSS) P,D’ + k:D) u?
Finally, substitution in Eq. (42) leads to
~ ~ -1 -
P, = QU (ng> +D (1+PJy) PeD” + kD) urQ!/? (67)

We now treat each of the terms in the last expression independently, to produce a simpler expression. The term that
contributes with a constant rate of increas®if is given by

P.(k) = kQ?U,DUTQL?
KQY/?U, [ 0(2(])V—2)><(2N—2) 0(2JIV—2)><2 ] uTQl/?
2X(2N—-2) 2x2

kQLY? (Uan-1UZy_; + Uy Uly) QY2

whereU, 1 andU,y are the singular vectors 6f, corresponding to the zero singular values. Using the expressions
from Egs. (176) and (177), and carrying out the algebra, we obtain

P.(k) = kgs;1nxn ® ax2 (68)

The term ofP$, expressing the effect of the initial uncertainty is given by

~ 1 -
Puiw = QY?U,D(I+P,) PD'UTQY?

— Q*U,DUTU, (1+UTQ;/*PyQ; 12U, T UTQ;/?PQ; 2U, DT UT Q)
where we have used Eg. (62). We now note that

Q2U,DUTQLY? = g, 1nxn @ Taxs

and thus
Pii = @ (Lvay © o) Q2 2U, (14 UTQ 2P0Q; U 0L.) T UTQ,2PoQ ! (T @ )
= 0% (ven @ 1a2) Q72 (14 Q;1/2PoQS-WUSJSSUZ)_1 Q;PPoQy ! (Iyuw @ Iaxa) - (69)
= ¢, (Iyxn ® Iax2) Q;'/? (Qi/Q + POQS_I/QUSJSSUZ)71 PoQ. ! (Inxy ® Iox2)
= ¢, (Inxn ® Irx2) Q! (I + Pon_l/QUstsUSTQs_l/Q)il PoQ, "' (Inxn ® Iox2)
We denote
%e :%Jr )\Z’er)\i
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and thus
U,J, Ul = U, diag (h()\;)) UL = h(C,)

With this notation, we can write
-1
Piie = ¢, (Inxn ® Iox2) Q.1 (I + Pole/Zh(Cs)Q;1/2> PoQ. ' (Inxn ® Iox2)
From the properties of the Kronecker product we obtain

Invin @ Ioxo = (Inxilixn) ® Ioxo = (Inx1 ® Iax2) (Lixn ® Iax2)
Additionally, we note that if// is a2 N x 2N matrix, then

(Anx1 ®Iax2) W (lixn ® Iax2) = (Inxi @ Iox2) (1ixn @ Lox2) W (Inx1 @ Iax2) (Lixn @ Iax2)
= (Iyx1® Iax2) ((11><N ® Iox2) W (Inx1 ® I2x2)) (1ixn ® Iax2)

= (Inxy ®@Iax2)® ((11><N @ Ioxo) W (1lnx1 ® szz))

Using these results, we see tiijt;; can be written as

Pinit = @2, (Invxn ® Iox2) ® {g ﬁ
where
a f -1 ~-1/2 “12) 7! -1
[ﬁ 5} = (lixny ® I2x2) Q; <I+P0Qs n(C.)Q; /) PoQ, " (Inx1 ® I2x2)
= (Lixy @ Iox2) W (Inx1 ® lax2) (70)
with

—1
W= Q7' (1+PoQr?h(CHQT2)  PoQc! = [y

From this expression, we conclude that= >, . 14 wij (6 = >, ; cien wiy) IS the sum of all elements 6¥” with
two odd (even) indices anél = w; IS the sum of all elements &% with an odd row index and an even
column index.

To summarize, we have shown that the steady state solution of the Riccati recursion (41) when the system is not
observable, is given by

i odd,j even

: 1 11
PS. = kg luxn ® Loxo + QY2U, l diagyn_o (2 t4/1t /\) 02N —2)x2 1 urQl/?
02 (28 —2) 022

+ @, Ay ® Iox2) ® [g ?} (71)

Finally, from this result, by setting
and
we can derive the following lemmas:

Lemma 2.7 The steady state covariance of the position estimates for a team of robots performing CL, when none of
the robots has access to absolute positioning information, and the initial covariance of the robots’ position estimates
is Py, is bounded above by the matrix

. 1 1 1
PY = kquylnxn ® Joxo +Q71/2Uu [ diagyn_o (5 +a/7 T Aw) OeN—2)x2 ] UZQ}L/z
02x(2N72) 0252
au u
t @ vy © b2 ® [ﬁ ; } (72)

TR-2003-0002 18



where we have denoted the singular value decompositi@,of= Q}/QHZR;lHqul/2 as C, = U, diag(\,,)UT,
andg,,,. is defined by

For computing the values of,,, 5, andd,,, we define

wW=Q," (I + P()QZI/2h(Cu)Q;1/2)_1 PoQ, "' = [wy]

where
2

A, 2
h(cu) =U, diag ( 21 + = /\u7> qu:

4

With this notation,c, = 3, jqq Wi (6u = -
indices and3,, = >

Lemma 2.8 The expected steady state covariance of the position estimates for a team of robots performing CL, when
none of the robots has access to absolute positioning information, and the initial covariance of the robots’ position
estimates i, is bounded above by the matrix

i j even Wij) 1S the sum of all elements &F with two odd (even)
wy; is the sum of all elements Bf with an odd row index and an even column index.

i odd,j even

. 1 1, 1
P = kirinxn ® oo +QY?U l g (§ tyat 5‘7) Oan—axa ] urQl/?
O2x (2N —2) 022

+ Q%<1N><N®IQ><2)®|:% g] (73)

where we have denoted the singular value decompositio@ ot Q'/?H’R~'H,Q!/? as C = U diag(\;)U7,
andgr is defined by

For computing the values af, 3 andd, we define

_ _ . -1 _
W=Q ' (1+PQ 2h(C)Q72)  PoQ " =[]

where _ —
_ _ i Ao\
h(C) = Udiag 5+ Z’ +X | U

With this notationp =, ;44 Wij (6= i even Wis) is the sum of all elements & with two odd (even) indices
andB = 37, ,4d,j even @ij iS the sum of all elements Bf with an odd row index and an even column index.

Several observations can be made with respect to the above results. We note that the upper bounds comprise of
three terms, the first of which contributes witlt@nstant rateof uncertainty increase. The second term is a constant
term, whose value depends on topologyof the RPMG and thaccuracyof the sensors on the robots. Finally, the
third term is a constant term that describes the effect ofriitial uncertaintyon the steady-state covariance. It also
depends on the noise characteristics of the sensors of the robots, as well as the RPMG topology. The fact that the
steady-state bound depends on the initial uncertainty is a consequence of the fact that the systebservable,
and therefore initial errors in the estimates for the robots’ positions cannot be fully compensated for.

It is clear that the most important term in the bounds is the one that corresponderistant rateof uncertainty
increase. After sufficient time, this term will always dominate the remaining ones, and will largely determine the
positioning performance of the team. A striking observation is ghatandgr areindependenbf both the topology
of the RPMG and of the precision of the robots’ relative position measurements. This quantity depends solely on the
number of robots in the team, and the accuracy of the robots’ Dead Reckoning capabilities. An intuitive interpretation
of this result is that the primary factor determining the rate of uncertainty increase is the rate at which uncertainty
is injected in the unobservable subspace of the system. Since the number, or the accuracy, of the relative position
measurements does not alter this subspace, we should expect no change in the rate of uncertainty increase, as a result
of changes in the information contributed by the exteroceptive measurements.
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2.5 RPMG Reconfigurations

In the preceding analysis, it is assumed that the topology of the graph describing the relative position measurements
between robots does not change. However, this may be difficult to implement in a realistic scenario. For example,
due to the robots’ motion or because of obstacles in the environment, some robots may not be able to measure their
relative positions. Additionally, robot teams often need to allocate computational and communication resources to
mission-specific tasks and this may force them to reduce the number of measurements they process for localization
purposes. Consequently, it is of considerable interest to study the effects of changes in the topology of the RPMG on
the localization accuracy of the team.

Consider the following scenario: At the initial stage of the deployment of a robotic team, the RPMG has a dense
topology74, e.g., the complete graph shown in Fig. 8(a), and retains this topology until some time insteimtn it
assumes a sparser topold@y, e.g., the ring graph shown in Fig. 8(b). This sparse topology may even &ty
graph i.e., the case in which the robots localize independently, based only on odometry. Subsequent topology changes
are assumed to occur at time instants = 1...n — 1, and finally, at time instant,, the RPMG returns to its initial,
dense topology7 4. Assuming that the time intervals;_1,¢;) are of sufficient duration for the transient phenomena
in the time evolution of uncertainty to subside, the following lemma applies:

Lemma 2.9 After a sequence of RPMG reconfigurations and once the RPMG resumes its initial topology, the upper
bounds on the positioning uncertainty of the robots at steady stateemticalto the ones the robot team would have
if no RPMG reconfigurations had taken place.

Proof Forthe purposes of this proof, we will use the result of Eq. (71). For convenience, we will express this equation
with respect to the normalized covariance maRiy, = Q;”QPZQ;”Q. In particular, we have

P,., = Q;'/*P:;Q;'?

kQSTQS_l/Q (]—N><N & IQ><2) Qs_l/2 + U,

diagyon_o (% +4/3+ 7\1) 0 an—2)x2 ] u?
S
O2x (2N -2) O2x2

+ Q7 (Inun @ ko) ® {g ﬁ] Q;'/?
Employing the results of Egs. (176) and (177), we can see that the column vectors of the matrix

V= \/QSTQS_I/21N><1 ® Iaxa

are the two basis vectors of the nullspace&Xf For this matrix we have

VVT = ¢, QY2 (Inx1 @ Iaxa) (Lixn ® Tax2) Q% = 40, Q5 V2 (I ® Tax2) Q5 /2

and therefore we can write

P, - kvvrau, | e (3 id) Oevoone ] u? (74)
02y (2n—2) 022
+ quQs_l/Q (Inxn ® Izx2) ® [g ﬂ Q. '/? (75)

Moreover, the quantity that expresses the effect of the initial uncertainty can be expressed equivalently as (cf. Eq. (69)):
Piuie = 2, (Inxny ® Irx2) ® {g g]

—1
= @2, (Inxn ® Iax2) Q. !/? (I + Q;l/ZPOQ;UQUstsUZ) Q. ?PoQ ! (Inxn ® Iaxa)

= qu (]—N><N & IQXQ) Q;1/2 (I + Pngh(cs))_l PTLQQ;1/2 (1N><N ® IQXQ)
= QY*VVT(I+P,hC,)) P, VVTQL/?
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Therefore Eq. (74) is equivalently written as

P - ivvTem, | domva (3 Ed) Oava ] U’
L O2x (28 —2) 022
+ VI (I+P,hC,)) " P, VVT (76)
Introducing the notation
1 1 1
f()\i)*iJr\/Zer
further simplifies the preceding expression, to yield:
Pn_“ _ kVVT + Us |: dla’gQN—Q (f(AZ)) 0(2N72)><2 :| UZ 4 VVT (I + Pnoh(cs))_l PnOVVT
: O2x (2n—2) O2x2
= V(Koo + VT (I + Py h(C) T P, V) VT 4 U, [ A Al LH
O2x(2n—2) O2x2
diagyy_o (f(Ni)) O@n—_2)x2 } T
= U, _ U’ 77
[ 025 (2n—2) kloxo + VT (I 4+ P, h(Cy)) ' P,V (77)
where we have employed the fact that the matrix of singular vetigrsan be partitioned as
U, =[S V]

with S being the2 N x (2N — 2) matrix of singular vectors corresponding to the nonzero singular valués.of

Assuming that the RPMG remains in the topoldBy for the time-step interveD, ¢1], and that this interval is of
sufficient duration for the covariance to reach steady state, then at timeérdtegnormalized covariance matrix is
given by

diagon o (f(A4,))  O@n—2)x2
P, () = U 2N -2 i (2N=2)x u? 78
. (t1) A 025 (2 —9) tiloxo + Ma 4 79

where
Ms=VT(I+P,h(Ca) ' P,V

In these expressions the quantities that depend on the RPMG topblolggive been denoted by the subscript It
is important to note that the basis vectors of the nullspace of the n@friareindependenof the topology of the
RPMG. This essentially is a consequence of the fact that the unobservable subspace remains the same, regardless of
the topology of the RPMG.
During the second phase, the RPMG remains in topoifgyor the time intervalt,, t3]. Thus, if steady state is
reached, at time step, the normalized covariance is given by

diagoy_o (f(AB,)) O aN—2)x2 T
o (t2) B O2x (2N —2) (ta —t1)I2x2 + Mp B (79)

where
Mg =VT (I+P,_ (t)M(Cp)) ' P, (t1)V

We will now derive a simpler expression fé¢ ;. We start by applying the matrix inversion lemma, to obtain
Mp = V'(I+P,, (t1)h(Cp)) ' Py, (t1)V
= VP, (t1)V =V P, (1) (I + H(Cp)Pu, (1) M(Cp)Pn,, (t)V
We now study the matrix produét = h(Cp)P,,, (t1)V, that appears in the last equation. We have

. diagon_o (f(A4,))  O@n—2)x2
Z = Ugdiag(h(Ap,)) ULU 2N -2 : (2N=2)x ulv
B lag( ( B’)) BEA |: 02><(2N72) t112><2 + MA 4
. ST diagyy o (f(Aa,))  On— Sh
_ v S v IN—2 i (2N—-2)x2 A
UB dlag(h(ABz)) |:VT:| [ A ]|: 02X(2N—2) t112><2+J\/[A VT V
. STS4  Opn— diagon o (f(A4,))  Opan— O n—
— Undiag (h(\n B (2N-2)x2 2N -2 i (2N-2)x2 (2N-2)x2
B 1ag( ( Bl)) [02><(2N—2) Inyo 02><(2N—2) t1loxo + My Ioxo
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In the last line we have used the fact tisdfV = SLV = 0(2n—2)x2, Which results from the orthogonality of the
columns of the matricel 4, andU 5. We also note that the last two diagonal elementdiad (h(Ap,)) (i.e., the ones
that correspond to the zero eigenvalues) are equal to zero.Zhan be written as

7 = Upg _diagQN—Q (h(AB,)) SESA 0N —2)x2 diagyy o (f(Xa;)) 0 2n-2)x2 SE Vv
i O2x (2N —2) O2x2 025 (2n—2) tiloxo + Ma | |[VT
~ U [diagy o (R(AB,)) SESadiagoy_o (f(Aa,)) O@n—2)x2| [O@n—2)x2
i O2x (2N —2) 0252 Izyo
- Up _diag2N72 (h(AB:)) SgSA diagyy_o (f(Aa,)) 0(2N—2)x2} {0(21\/—2)“]
i O2x (2N —2) 022 Ioxo
= Opn-2)x2

Using this resultM g can be written as
Mg = VTP, (t,)V

diagon_o (f(A4;))  Oan—2)x2
_ 'VTU 2N -2 i ( )X UTV
A [ 025 (2n—2) tilaxo + Mg A

diagon_o (f(A4;))  Opn_2)x2 S’

- vT[s vV 2N -2 i ( )% Alv

[Sa V] { O2x(2n—2) tiloxo + Ma | | VT

~ o Ios) diagyy_o (f(Aa;))  O@n—2)x2 02N —2)x2
2X (2N —-2) 2X2 02><(2N72) t1[2><2 +MA I2><2

= tiloxa + Mgy

Substitution of this result in Eq. (79) yields

diagoy_o (f(AB;))  O@n—2)x2 T
P, (t = U K U 80
o (t2) B [ O2x (2N —-2) tolayo + Ma B (80)

From the last expression, we conclude that the term describing the effect of the initial uncertdiatgasndor both
topologies7, and7g.

If at time stept, the RPMG assumes its initial topolodg,, once again, then by a similar proof we can show that
the value of the normalized covariance at some tigne ¢, is given by

diagoy_o (f(A4;))  O@n—2)x2 T
P t = U ¢ U 81
nea (0) 4 { O2x (2N —2) taloxo + Ma A (81)

However, we can see that this result is the same one that would result from use of Eqnri®dbnfigurationdrad
occurred. We have thus proved the lemma for the case where the intermediate tafjpisgyconnected one.
If during the intermediate phase the robots localize based only on odometry, then during this time interval their
covariance bounds are propagated by
PZJrl = Plsc + Qs
or, expressed using the normalized covariance,
Pnk+1 = Pnk + IZN><2N

Thus, at time step, we would have

P.(t2) = Pu (t1)+ (t2 —t1)lanxan
_ diagoy_o (f(Aa,))  O@n—2)x2 T
= Us [ 025 (2n—2) tidaxo + My Uit (b2 = t)ansan
diagon o (f(Aa,)) + (t2 — t1)l2n—2)x (2N —2 0 aNn_2)x2 T
- U IN—2 i ( )X ( ) ( )% U 82
4 [ O2x (2N —2) tolaxo + Ma 4 (82)

By comparison of this result with the result of Eq. (80) we observe that the basic structure of the covariance matrix
remains the same. By a proof analogous to the one presented in the preceding analysis, we can show that Eq. (81)
holds without change.
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Up to this point, we have proven the lemma for the situations where the intermediate topblody, either a
connected or an empty graph. To show that the lemma also holds for any other possible t@polfugyexample, the
case in which only some of the robots localize using odometry, while a subgroup or robots can still record relative po-
sition measurements) we study the Riccati recursion that describes the normalized covariance during the intermediate
phase. This recursion can be written as (cf. Eq. (89)):

P,., =P, + Cs)il + Loy xan (83)

where
C, = Q!’HIR;'H,Q}”

If the RPMG is not a connected one, then the maHixR; 'H,, which expresses the information provided by the
exteroceptive measurements, will satisfy the relation:

H'R;'H, < H'R/'H/

where the matricedl’! andR/, correspond to @onnectecRPMG that contains the original one as a subgraph. As
a consequence, the original matx and the one corresponding to the connected graph will safisfy< C-.
However, it is easy to show that the right hand side of Eq. (83) is a matrix-decreasing func@iQnwhich means
that

=P/

Nk+1 — MNEk+1

Additionally, in Appendix A it is shown that the right hand side of the Riccati recursion is a matrix-increasing function
of the covariance matriR,,, . Using these two results, and applying induction, in a fashion similar to the one presented
in Appendix A, we can show that the value of the covariance matrix at#jmeéll satisfy P, (t2) < P;, (t2).

In Appendix | it is shown that the matrix \

C,<C,=P

Ma=V"(I+Py, (t2)h(Ca))” Py, (t2)V
is a matrix-increasing function of the covariarieg,_(¢2). This means that

Pnss (tQ) = P;zss (t2) = Ma = M1/4
But we have seen that
P, (t2) 2P, (ta) 2Py, (t2)

and that for the matriceB,, _ (t2) andP,,_, (t2) the value of)M 4 is the sameThus, we conclude that for any possible
topology, the value of\/4 will be identical to the one derived for the case of a connected graph and for the case of
Dead Reckoning. This implies that the lemma holds for any possible intermediate tofiglogy

This is a significant result due to its important implications. Consider the scenario where the robots of a team,
during a phase of their mission, are forced to receive and process a small number of measurements, or even resort to
mere Dead Reckoning, due to communication or sensor failures, or because CPU and bandwidth resources are required
by other tasks of higher priority. During this interval, a reduced amount of positioning information is available to the
robots (sparse RPMG topology) and as a result the performance of CL will temporarily deteriorate. However, once
the initial, dense RPMG topology is restored, the team’s positioning performance will have sustathegtadation
Furthermore, Lemma 2.9 indicates that a dense topology for the RPMG during the initial phase of the deployment
of a robot team has a long-term effect on the localization performance of the team. Specifically, if during the initial
deployment, the robots leverage their communication and computational resources to support a dense RPMG, this will
improve their positioning accuracy at the beginning of CL. Later on, and as the robots focus on mission-specific and
other time-critical tasks, they will have to rely on sparser RPMGs as resources dictate. However, when at a subsequent
time instant the RPMG resumes its initial, dense topology, the above lemma guarantees that the maximum expected
uncertainty will beidenticalto the one that would arise if the dense RPMG topology was retained throughout the run
of the robots.
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3 Continuous-Time Analysis

3.1 Motivation

In the previous section, the analysis was presented in discrete time, under the assumption that all the measurements
(exteroceptive and proprioceptive) are available at the same frequency. However, in practice different sensors usually
have different sampling rates. In order to address this problem, we present in this section a continuous-time analysis of
the performance of CL. For a robot team with a set of sensors each of which has a given accuracy and a given sampling
rate (in general different for each sensor), we can construct a continuous-time system model, in which the covariance
of the position estimates will be identical to the covariance of the position estimates in the actual, discrete-time system.
Assuming that the odometric measurements of rélaoe available everyt; seconds, and that the standard devi-
ations of velocity and orientation errors in discrete timearg ando,, respectively, then selecting

ov,, = \/EUVdiv and o, = /0ti0g, (84)

yields an “equivalent” continuous time system model, in the sense that for both systems the the rate of influx of
uncertainty due to system noise is identical. The proof of this result is given in Appendix G.

Similarly, if exteroceptive measurements whose covariance matfiy isire available everyt, seconds for the
i-th robot, then the covariance matrix function of the measurements in the equivalent continuous time system model is
(Rq,0t;) 6(t — ), whered (¢t — 7) is the Dirac delta function [12]. The factdt, can be seen as a normalizing factor
to ensure that the information influx in the system due to the exteroceptive measurements is appropriately scaled with
the sampling frequency of these measurements.

In the following sections, the continuous-time analysis is presented. Since many readers are not familiar with the
continuous-time EKF and the continuous-time Riccati equation, we first present an analysis for a hypothetical scenario
of a team or robots localizing in a one-dimensional environment. In this simple case the main results of the derivations
can be exhibited more clearly, and a more intuitive understanding can be developed.

3.2 Motionin 1D

A group of N robots moving in 1D uses proprioceptive measurements (e.g. velocity) to propagate their state estimates.
The continuous-time state propagation equation for this system is written as (cf. Appendix C):

z(t) = v(t) + w(t)

wherez(t) is a vector containing the positions of the robat§,) is the input (here the velocities of the robots), and
w(t) is the noise in the measurements of these velocities. By comparison with Eq. (167) we dég thatOy « v,
and alsoB(t) = G(t) = Inxn, the identity matriX. w(t) is assumed to be white zero-mean Gaussian, with constant
covariance matrix). Since the noise processes that corrupt the measurements of different robots are inde@endent,
is a diagonal matrix@) = diag(g;), whereg; is the covariance of the noise affecting the measurements éhthebot.

The robots are also equipped with exteroceptive sensors that allow them to measure: (i) their relative position,
and (ii) their absolute position. We note that in this formulation absolute position measurements @guired,
but availability of such measurements greatly improves localization performance. The measurement model for the
exteroceptive measurements is:

2(t) = Hz(t) + n(t) (85)

whereH is the measurement matrix, relating the measurements with the current state of the systers thadhoise
in the measurement, assumed white zero-mean Gaussian, with covariancelinatrix

In order to determine the behavior of the covariance, we need to study the eigenvalokthe matrixC =
Q'?HTR-'HQ'Y2. The types of measurements performed by the robots play a significant role in determining
these eigenvalues. We are here concerned with 2 different types of exteroceptive sensor measurements: (i) relative
position measurements, i.e., measurements of the difference of the positions of two robots, and (ii) absolute position
measurements. The measurement matrix can be written as

Hi,
H= [ H{Of ] (86)

3Throughout this Technical Repakt, x ., denotes then x m identity matrix, 1, denotes then x n matrix of ones, an@,, «, denotes
them x n matrix of zeros.
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whereH; and Hy are submatrices that correspond to the relative and absolute position measurements respectively.
These two matrices have a special structure. Specifically, mAtriis composed of a set of submatricesg; that
contain a “1” at theth column, corresponding to the rohiateceiving an absolute position measurement, i.e.

Hy=| Hy,

with
Hyy=[0 ... 1 ... 0]

On the other hand, matrik; ; comprises of rows, each of which corresponds to a relative position measurement, or
equivalently, to one edge of the RPMG. The row associated with the measurement betweehanlgtsontains a

“-1”, at the column, corresponding to the rolioegistering the relative position measurement, and a “1” at the column
that corresponds to the robptvhich is observed in the measurement, i.e.

Hy,
Hpjy = :
Hmn
with
Hy=[0 ... =1 ... 1 ... 0]

The matrix so defined is identical with tirecidence matribof the RPMG, when this is viewed as an unweighted graph.
In Appendix E.1 it is shown that when the robots do not receive absolute position measurements (in which case the
measurement matrikl equalsH;;), C' has exactly one eigenvalue equal to zero. Contrary to that, when at least one
robot receives absolute positioning information, all eigenvalues are greater than zero.

Using F = Oyxn, B = Inxn, @andG = Inxn, the continuous time Riccati equation that describes the time
evolution of the covariance for the position estimates of the robots is written as (cf. Eq. (169)):

P=Q—-PH'R'HP (87)

For the solution of this matrix differential equation the standard methodology involving the decomposifign) of
into two matrices, and forming the Hamiltonian matrix is employed [13]. The solution is described in what follows.
In order to facilitate the derivations, we first definelasthenormalized covariance

P, =Q'?PQ7'? = P=Q"*P,Q"? (88)
Substitution in Eq. (87) yields
Q1/2P7LQ1/2 _ Q_Ql/anQl/QHTR_1HQ1/2PnQ1/2 =
P, = Inxn-—P.Q?H'"R'HQ'?P,

We introduce the matriK' = Q'/2HT R~ HQ'/?, and the previous equation is simplified to:
P, = Inxn — P,CP, (89)
The solution to this equation is found by substituting
P, =AB™! (90)
Note that since

BB = In«n
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itis

% (BB™') =0nxn =

BB™'+ B%(B’l) =0nxn =
%(B*l) =B !BB7!
Substituting in Eq. (90) we have
P,=AB ' - AB'BB7! (91)
Using Egs. (90) and (91), Eqg. (89) can be written as:
AB ™' — AB7'BB™' = Iyxn — AB 'CAB™!
Multiplying both sides by B we have
A-AB'B=B-AB7'CA
Separating the nonlinear from the linear terms and noting that

—-AB™'B = —AB'CA=
B = CA

we can decompose the Riccati in the following two equations:

A = B
B = CA
or in a matrix form
B Onxy C B
; = 92
[A} [INxN 0N><N:||:A] (92)
Where the matrix
OnxnN C
H= 93
[ Inxn Onxn ] (93)

is the Hamiltonian of this system. The general solution of Eq. (92) is given by

58]-( 28]

where A(0) and B(0) are the initial values for these matrices. These are selected so that the id&ftity =
A(0)B~1(0) holds, i.e.,A(0) = P,(0) and B(0) = Inxx. Employing Taylor series expansion for computing the
exponential of the Hamiltonian matrix yields:

H2t2 H3t3
th = Inyn +Ht+ + + .=
2! 3!
| Inen + O 4O 4 OB 4 CH+C2L 4 O3 4 ...
- 3 5 2 4 6
TInxn + O +C? 5+ Inxn + OG5 +C? 5 + 0% + -

In order to derive a simpler expression for this relation, the Singular Value Decompositibis @mployed. That
is, we writeC' = UAUT whereU is an orthonormal matrix containing the singular vector§'pfindA is a diagonal
matrix whose diagonal elements are the eigenvalues. odinceC = Q'/2HTR-1HQ'/? is a symmetric positive
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semidefinite matrix, its eigenvalue;, are real and nonnegative (and equal the squares of the singular Xaloks
QY?HTR-1/?),i.e. A = diag()\?). We also note that since for symmetric positive semidefinite matrices, such as
C, the singular values are identical to the eigenvalues, and the eigenvectors to the singular vectors, these terms can be
used interchangeably.
We now manipulate each of the submatrices comprisifgseparately. The 2 diagonal submatrices are equal to
each other, and are given by:
t? t t6
U1 1) =e"(2,2) = Inan+ 05 +CP L+ 4
! ! ! y

27

tG
T\3
T UAUTY L

2
= Inxn+ UAUT% + (UAUT)

2 t4 t6
= Inxn+ UAUT—' + UAQUTE +UANUTZ +...

2 6!
t2 2t4 3t6 T
= U([NxN—ﬁ-Ag—&-A J-|—A @-l-“-)U
t2 4 46
= Ullnxn + (A1/2)25 + (A1/2)4E + (A1/2)6§ + Ut

= Udi 1 A2t2 /\4t4 A6t6 ur

1
= §U diag (eA"'t + e_>"‘t) T
To obtain the last expression, the result from Appendix D was used. The upper right submettisgiven by:

Ht1,2) = Ct Cth O3t5
e (,) = ﬁ—i_ ?4— 5“‘

3 5
= UAUT(Inunt+ UAUT§ + UA?UT5 o)

t3 to
= UAUTU(t+A§ +A25 Ut
1/2 1/2 32t3 52t5 T
= UA/m/t+A/§+A/§+~JU

13 1o

1
= iUdiag (Nt —e M) UT
We treat the lower left submatrix ef?* in a similar manner:

t
1!

Ht £ 210

t3 o
= tInxn + UAUT§ + UAQUT5 SE

t3 t5
| £ 52t T
§+A a—F"')U

. 1 gt? 5 t° .
= Udiag y()‘it+)‘i§+)\i§+'“) U

1 e/\it _ e—kit
= —Udiag| —— | UT
2 & ( Ai )
In Appendix E.1 it is shown, that when none of the robots receives absolute position measurements, the smallest

Nt _

eigenvalue of” is equal to zero. Thus, in this case the quantity (%"“) that appears in the last expression

— UA~V2(AY2 4 732
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presents a problem, since the eigenvalues appear in the denominator. Note that the quantity being divided by the zero
eigenvalue is also equal to zerd( — e~ = 0) and therefore the above expression is actually undefined. However,
in Appendix F it is proven formally that the quantity under consideration exists, and is given by

1

. eXit _p—Ait
ri(2,1) = SU | e (555) Oy

i

ut (95)
Onv-1)x1 2t

This expression is quite cumbersome, and its use would make the resulting formulas unappealing and difficult to
understand. We will therefore continue to use the initial, less strict notation in the following, bearing in mind that its
true meaning is given by this last expression.

Combining th previous results, the following expressiond®t is derived:

$U diag (eM! + e MO UT LU diag (Ai(eM! — e ™)) UT
et = 1 : etit—eNit T 1 : it —N\it\ 77T (96)
§Udlag(>\7i)U §Udlag(el +e L)U
Substituting fore*** in (94) and using the initial value4(0) = P, (0), B(0) = Ixxn, Yields:
Bt ] _ i Inen | %U diag (e)‘itj-te’j‘;? UT + %U diag ()\i(e)‘it — e”‘it)) UTP,(0)
Al | = P.(0) | T | lUdiag (;7) UT + 1U diag (X + e=it) UT P, (0)
Thus, using Eq. (90) the solution for the normalized covariance becomes:
Lo Mt —eT NN 1 Nt | Nt 77T
P,(t) = §Ud1ag — U +§Ud1ag (e +e M) UTP,(0) | x
1 1 !
X (QUdz'ag (eAit + e*/\"'t) UT + §U diag ()\i(e/\"t . e*)‘it)) UTPn(O)>
e)\it _ 67>\it
= U <diag (A) + diag (e + e ") UTP”(O)U> x
x  (diag (X' + ™M) + diag (A (e — e M) UTPH(O)U)*1 ur
= U (K(t) + L(t)Po) (L(t)+ AK()Po)~" UT (97)
Where we have denoted
EA"’t _ e—)\,;t
K (1) = diag ()
Ai
L(t) = diag (" + e~ ")
and
Py =UTP,(0)U
We will now show thatP, (¢) can be written as
Po(t)=U (K@#)L{t) ™+ M) U" (98)

where M (t) is a matrix to be specified. For notation simplicity, we drop the time arguments K6t L(¢) and
M (t) in the following. From Egs. (97) and (98) we have:

Po(t) = UK +LPR)(L+AKPR) 'U" = UKL '+M)U" =
(K+LP)(L+AKP)™' = (KL7'+M)=
K+LP, = (KL '+ M)(L+AKP) =
K+ LPy = K+L 'K?APy+ M(L+AKPy) =
(L—L'K*A)Py = M(L+AKP) =
M = (L-L'K?A)Py(L+AKP,)™!
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We note that :
L—L'K’A = L(Inxn—L?K*A)

_9 6)\,jt _ e—>\,jt 2
= diag (eM' + e_>""t) Inxn — diag (ekit + e_Ait) diag () diag(\?)
. Ait Ait : it — e\ ?
— dlag (e ? —|— e 7#) INXN — dlag (W)

. A
= diag (M + M) (diag<(em+e M (e klt)?) )

eAit + 67)\7;t

o (Mt 4 eMit)2 _ (At _ o= Ait)2
= 1ag €>‘it + ef)wt

. 4
= diag (eAq‘,t " 6_/\“&>

= 417!

ThusM can be written as
M = (L-L'K?A)Py(L+AKP,)™!
= AL7'Py(L+AKPy)™!
— AL 7'y (Inxy +AKL ') L7
and substitution in (98) yields:
Py(t)=U (KL‘l +AL Py (Inww + AKL 1 P) 7! L—l) uT (99)

To determine the behavior of the covariance at steady state, we compute the limit of the above quantity as time goes
to infinity. We identify two different cases, based on the availability of absolute position measurements.

3.2.1 Steady-State Covariance - Observable system

When at least one of the robots receives absolute position measurements, all the eigen¢aluitidef positive, and
thus at steady state (i.e., as> oo), we obtain:

it

)\it
e e ) diag (e)‘it + e_’\"t)il
7

. -1 . .
lim KL = tlirglo dlag( "

t—o0
1
= diag [ —
ing ( Ai)

lim 4L~ Py (Inxn + AKL—lpo)*1 L™ = lim diag (eM' + e_)"‘t)_l (Inxn + AY2Py) "t diag (eM + e M)
t—o0 t—oo

And also

= Onxn

Using the above two results, we see that

lim P,(t) = lmU (KL—l +ALP (I + AKL 1 R) L‘1> uT

t—o0 t—o0

1
U diag <A> vt

X2

and therefore the steady state covariance for the position estimates of the robots will be

Py (t) = Q'?U diag (Al) UrQ\? = Q\*Ve1Q' (100)

%
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wherev/C—1 = UA~Y/2UT is the matrix square root & — !, which always exists since the eigenvalueg'aire posi-
tive. Notice that when at least one robot receives absolute position measurements, the steady state uncertainty depends
on the topology of the RPMG (affecting), and the uncertainty of proprioceptive and exteroceptive measurements,
represented by) and R (which is embedded i®).

In order to gain more insight on how the measurement accuracy and the graph topology affect the steady state
localization uncertainty, we consider the simple case in which ¢/, andR = rI, i.e., a homogeneous robot group.
In this case, it is trivial to show that the expression for the steady state covariance reduces to

P, = \/q7 (HTH)_l (101)

Since in this equation the effects of the graph topology and the measurement covariances are decoupled, we can see
more clearly the effect of the accuracy of the sensors on the steady state localization uncertainty.
3.2.2 Steady-State Covariance - Unobservable system

When none of the robots receives absolute positioning measurements, the smvatlessihgular value of” equals
zero. Using the expression in Eq. (95), we can write

6)\125 _ 67>\it 1
KL™! = diag ()\ ) diag (eM' + e~ 7)
i
M. At =Nt
_ | diagn_ (M) On—1x1 (102)
i O1xn-1 Mofﬁ

. eNit _e— it
_ diagn_4 </\Z(ex,¢+exit)> On_1x1 n Onv—1)x(v—1) Ov—1)x1
O1x(N-1) 3

O1xnv-1

Taking the limit of the first term of this expression yields:

. eNit o=t .
lim dlangl ()\i(e%tJrer)) On-—1x1 — [ dlangl ()\%) 0(N—1)><1 ‘|
f=oo 010 n_1 01 (N-1) 0
And thus at steady state, the teiiL.~! becomes
: 1
[ diagn_q (,T) Ov—1)x1 ] (103)
O1x(nv—1) t

In the last line, we have again useds the bottom right element of the matrix, to point out that this element contributes
with a constant rate of increase of uncertainty. We also note that

lim 4271 Py (I + AKL™'R) 'L =

: 1 : 1
lim 4 dlagN,l (W> 0(N—1)><1 P (INXN‘FAKL_lP())il dlagN,1 (m) 0(N—1)><1 1
oo O1x(v-1) 1/2 O1x(N-1) 1/2
—1
_ | Owv—nxv-1) Ov—1)x1 } P, (INxN+A1/2Po) [ On-1x(v-1) Owv—1)x1 }
O1x(v-1) 1 O1x(v-1) 1
By denoting
. mi1 mi2 MmN
Py (Inen +A2R) =
myN1 MTMN2 ... MNN
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we can write

Nim AL Py (Inen + AKLT'R) T L1 =

_ mi1 mio miN
_ Onv-—1)x(v-1) Ov—1)x1 : : : : Onv—1x(v—1) Ov-1)x1
O1x(n-1) 1 : : : : O1x(nv-1) 1
myNi1 MTMN2 ... MNN
[0 0 0
_ 0 0 . 0 Onv—1)x(v-1) Ov—1)x1
: : : : 01x(n-1) 1
_le my2 .. MNN
_ Ov-1xv-1) Ow-1)x1 (104)
O1x(v-1) MNN

Thus only the last element of the last rowRf (I nx + AY2 ) ~'is needed. Recalling thd, = U7 P, (0)U, we
can write

—1
M = UTP,(0) (INXN+A1/2UTPn(0)U)

U
—1
U vtu

= UTP,(O)U (Inun + A2UTP,(O)U)

= UTP,0) (UT)" (INxN n Al/ZUTPn(o)U) Uty

(
— UTP,(0) (UUT + UA1/2UTPn(O)> U
= UTP,(0) (

Inen + \FCP,L(O)) U

_ [ UITUIJV@l }Pn(()) (INxNJr\@Pn(O))_l[ Unn-1 Uy ]

1 —1
Upn-1 ULy_1Pu(0) (leN+\@Pn(o)) U

U1 Pa(0) (I + VOP,(0))

-1 1
UEPa(0) (Insn +VOPA(0)) Urvor  UEPa(0) (Insn +VCPa(0)) U

In the abovel/;.x_1 is @ matrix of dimensiond/ x (N —1), consisting of théV —1 singular vectors of' corresponding
to the nonzero singular values. From the above expression, we obtain

-1
myny = ULP,(0) (INxN + \@Pn(O)) Uy (105)

In Appendix E.1 it is shown thadl xy = \/Grora1 @~ /?1 1, Where

1 1
=y — (106)
Gtotal i1 qi
Substitution in Eq. (105) yields:
-1
mNN = qtotallj];fle_l/2Pn(0) (INXN + \FCPn(O)) Q_1/21N><1

—1
= Gl §a Q@ POQT? (Ivan +VEQ2PO)Q™?) T Q7 P 1y
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-1
We denotelV = g0 Q1 P(0)Q /2 (I + \FC’Q*/QP(O)Q*ﬂ) Q~'/? = [w,;], and the above relation re-
duces to

mNN = Zwij (107)

That is,m yy is the sum of all elements of the matfik. Using this result, and the result of Eq. (103), we have the
following expression for the normalized steady state uncertainty:

n { Onv—nxv-1) Oww-1)x1 D uT

diagy_q (,\i) Ov—1)x1
01x(Nn-1) mNN

O1x(nv-1) t

Po(t) = U<

Thus the actual uncertainty at steady state is:

P(t) = Q1/2U< diagy 4 (%) On-1)x1

|:0(N Dx(N=1) Omv—1)x1 D UTQY?

01><(N—1) t 01><(N 1) MmNN
02U diagn_4 (%) ON—1)x1 UTQ1/2+Q1/2U[ Onv—1)x(N=1) Ov—1)x } UTQ?
01y (n—1) O1x(nv—1) t+mynN
= P+ Pyt (108)

In the above relation, the terf; is a constant term, that is independent of the initial uncertainty of the robots. The
term P (t) can be written as

P(t) — Ql/zU{ Onv—1)x(v—1) Ov—1)x1 ]UTQI/Q

O1x(v-1) t+mnn
= (t+myn) QVPUNUELQY?

= [+ [wii] | grotar Lnxn

= tGrotallNnxn + Z[wzj] Qtotal LN x N
.3

We have thus proven the following lemma:

Lemma 3.1 For a group of N robots moving in 1D and performing cooperative localization, their positional uncer-
tainty at steady state grows linearly with respect to time, and is given by

diagy_4 (i) Ov—1)x1

Pss (t) = Ql/zU
O1x(N-1)

UrQ\? + Z[wiﬂ Qtotal INxN + t Gtotal INxN
0,J

Where
1

qi

Mz

Qtoml =1

and
W = GuraQ " POQ (Ivuw +VEQPOQ™?) " Q712 = [y

It is worth noting that the rate at which the uncertainty growgig,;, and isidenticalfor all the robots in the group,
andindependenof the topology of the RPMG. We also note that from Eq. (106) it follows that

N
1
=y —= = Grotar < max(g;) (109)
maxz(ql) i

Gtotal i—1 qi
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In the absence of relative position measurements the uncertainty of each robot grows linearly with time, and is given
by P, = ¢; t. Therefore, during CL the rate of uncertainty increase is smaller than the rate of increase the robot with
the best odometry sensors would have, in the absence of relative position measurements.

The constant term of the steady state covariance depends of the network topology (affecting the eigenvectors and
eigenvalues of”), the initial uncertainty and the accuracy of all the measurements performed by the robots. The
effects of the number of robots, the initial uncertainty, and the network topology, become more evident in Section
3.2.4, where simulation results are presented.

3.2.3 Reconfigurations of the RPMG

The preceding analysis assumes that the topology of the graph describing the relative position measurements between
robots does not change. However, in a realistic scenario this may not be the case. In practice the topology of the
RPMG may change as the robots move in space (see also Section 3.4), and therefore the study of the effects of RPMG
reconfigurations on the positioning accuracy is of considerable interest.

In this section the following scenario is examined: At the initial stage of the deployment of a robotic team (Phase 1),
the RPMG has a topology A, e.g., the complete graph shown in Fig. 8(a), and retains this topology until time;instant
when it assumes a different topology B (Phase 2). This topology may be a connected one, e.g., the ring graph shown
in Fig. 8(b), or even an empty graph topology, i.e. the case in which all the robots localize independently. We will
show that consideration of both cases leads to the same result. Finally, at a second time,irts@RPMG assumes
the initial topology, A, once again (Phase 3). We assume that the time intéyal$, (¢,t,) are of enough duration
in order for the transient phenomena in the time evolution of uncertainty to subside. For this scenario, the following
lemma applies:

Lemma 3.2 The steady state uncertainty of the robots after the RPMG has resumed its initial topology is identical to
the steady state uncertainty that would occur if no RPMG reconfigurations had taken place. This implies that these
reconfigurations inflict no loss of positioning accuracy at steady state.

Proof Assuming that the time intervd0, ¢, ) is of enough duration for the steady state results to apply, attirtree
normalized covariance is given by Eqg. (108) as:

~ 1
Pn(tl)—UA< diagyy (5) O )Ui (110)
O1x(N-1) t1+mNN,
where
—1
mny = URPa(0) (Insn + VCaPal0)) - U (111)

In the above relationg, (0) is the initial normalized covariance, and the subscAptas been appended to denote
guantities related to the RPMG topology A. Sirég, the eigenvector of® associated with the zero eigenvalue, is
independent of the topology of the RPMG, no additional subscript need be appended to it.

We first consider the case in which the RPMG assumes a connected topology B &t tiha later time instant
to, after sufficient time has passed from the change of the RPMG topology, the normalized covariance matrix is given

by

: 1
Py(t2) =Usp diag (’\Bi) O -1)x1 Ug (112)
O1x(n-1) (ta —t1) + myng
where
-1
mane = UZPa(t) (v + VCpPa(h))  Un (113)

In order to simplify the last expression, we first employ the matrix inversion lemma (Appendix H):

Uk Pa(tr) (Insx + VCrPalth))
-1

UXPa(t1) (INXN -vCp (INXN + Pu(t1) v CB) Pn(t1)> Un

-1
= URPu(t)Ux = U Pa(t)V/Cr (Ins + Pa(t)V/Cr)  Pa(ti)Un

1
Un

MNNg
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and substitution from Eg. (110) yields:

: 1
MNNg = UﬁUA dla‘ngl ()\Ai) O(Nfl)X1 UZ;UN _
01><(N71) 1+ mNN,
T diagn_4 (%) O(N—1)x1 T -1
- ULUa UAVCs (Inen + Pa(t1)V/Cp)  Palt2)Uy
O1x(nv—1) t1+mNN,
. 1
= oo ... 1| YN (U) Ov-vx1 | g1y, -
O1><(N—1) 1 +MmMNN,

. 1 —1
— 000 - 1] l dlagN*(M) Ov—1)x1 Ui\ Cp (INxN+Pn(t1)ﬁ) P (t1)Un

O1x(nv—1) 1+ MmN,

=  (ti+man)000 --- NUIUN —

— (ti+myn)[000 - 1]U§\/@(INxN+Pn(t1)ﬁ)_lpn(t1)UN
= (i + man)UEUN — (t + man, ) US/Cr (INXN + PMH)\/@)?I P, (t1)Un
= (ti+mun,) — (t+ man, ) USUSAY2US (INXN + Pn(tl)\/@)& P(t1)Ux

-1
= (i +man,) — (L +man,)0 00 - 1JAY?UT (INXNJrPn(tl)\/C ) Po(t1)Un

= (i +mnnN,) (114)
In the last line we have used the fact that the smallest eigenvaltlg &f zero, and thus the proddéto 0 - - - 1]/\113/2

yields a zerdl x N vector. Substitution in Eq. (112) yields the uncertainty for the robot team atitime

diagn 4 (i) O(N—1)x1

Pn(tz) = UB
O1x(v-1) to +myN,

Ut (115)

From the last expression we conclude that the steady state covariance term due to the initial uncertainty of the robots,
Mnyn, is equal tomy, for bothtopologies A and B. At time, the RPMG assumes topology A again, and by
following the same steps, it is straightforward to show that the steady state normalized covariance matrix will be, in
analogy with Eq. (115),

diagn_ (A%n) Ov-1)x1

P,(t)=Uy
) O1x(N-1) t+ MmN,

Ut (116)

By comparison of the last expression with that in Eqg. (110), we observe that the result is identical to the result that
would be derived if the RPMG had undergame reconfigurationsin the following we show that the same property
holds for the case in which during Phase 2, the robots localize independently, without performing relative position
measurements.

If no relative position information is utilized, then the Riccati equation describing the time evolution of covariance
is simply P = @, or P, = Inxn. Therefore, if the normalized covariance matrix at titpés given by Eq. (110),
then at timet, we have

diagy (A%h) Onv—1)x1
O1x(Nn—1) t1+mnnN,

diagy_, (ﬁ) +(ta—t1)  Ov-1)x1
015 (N-1) ta + mNN,

Pn(tQ)/ = UA (

al

At time t, the RMPG resumes topology A, and therefore at steady state, the normalized covariance matrix will be

) UT + (ty —t1)Ingn

) Ut (117)

diagy (ﬁ) Ov—1)x1
O1x(N=1) (t —t2) + miyn,

) Ut (118)
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where
1
myy, = UxnPu(t2) (INXN + CAPn(tQ)/) Un

UN P, (t2) (INXN —/Ca (INXN + Pn(tz)/\/a)_l Pn(tz)') Un

-1
Uk Palt2) Un = U Palt2) /Tt (I + Palta)'/Ca ) Palta)'Un

By comparison of the last result, wheRg (¢2)" is given in Eq. (117), with the expressions in Eqgs. (114) and (112), it
becomes evident that following steps analogous to the derivation in Eq. (114) yields

miyn, =tz +MmyN, (119)
and therefore, Eq. (118) becomes
i 1
P,(t) = Ua diagy_y (xm) On-1)x1 T
O1x(Nn—1) t+myn,

which is identical to the expression in Eq. (116).

Clearly, the above results can be extended to the case of more than one intermediate phases of the RPMG topology.
The preceding analysis shows that when the relative position information available to the robots is temporarily reduced,
or even when relative measurements are not performed by any robot for a finite time interval, then after the initial
RPMG topology is restored, the accuracy of the position estimates for the robots will have sustadezptadation
Additionally, we observe that the steady state covariance term attributed to the initial uncertainty depgodghe
first topology of the RPMG, regardless of the subsequent topologies. This result implies that it is beneficial to employ
a dense RPMG topology during the initial stage of the deployment of a robot team. In this way the resulting
term will be small, and this will benefit localization of the robots for any topology the RPMG assumes in later stages.

3.2.4 Simulation Results

In this section we present simulation results that validate the preceding theoretical analysis. Initially a heterogeneous
team of 5 robots moving in 1D is considered. The covariance of the measurements provided by the proprioceptive and
exteroceptive sensors of the robatsandr; respectively, as well as the uncertainty about the initial positions of the
robots were assigned different values for each robot in the group. Fig. 1 presents the evolution of the covariance for
each of the five robots. It becomes clear that the rate of increase is the safiedbpts in the team. After the initial
transient phase, the uncertainty of each robot grows linearly, with the constant offset for the uncertainty being larger
for robots that receive measurements of poor accuracy.

Fig. 2 shows the effect of different RPMG topologies on the steady state positional uncertainty of the robots. To
preserve figure clarity, a homogeneous robot group is considered in this case. The group consists of five robots, and the
plot shows the evolution of the uncertainty for four different RPMG topologies. In each of the RPMGs considered, each
robot of the group measures the relative position of a number of robots, and this number is the degree of connectivity
(d) for each node of the RPMG. In the plots shown in Fig. 2 this degree ranges from 1 to 4. We may observe that the
rate of increase of uncertainty igenticalfor all RPMG topologies considered, even though these vary significantly,
from a ring graph (when thé = 1) to a fully connected graph (wheh= 4). The only effect of RPMG topology is,
as evident from the figure, on the constant term of the steady state uncertainty.

In Fig. 3 the effect of the number of robots on the rate of uncertainty growth is presented. Robot groups of 1 (i.e. a
single robot performing Dead Reckoning) to 6 robots are considered, and the RPMG topology is fully connected, in all
cases. Itis clear that an increase in the number of the robots that cooperate results in an improvement of the accuracy
of localization for all the robots. However, it should be noted that this improvement follows a law of diminishing
return, i.e. the gains from adding one robot to the group are less significant for large robot groups.

The last set of figures demonstrates the effects of RPMG reconfigurations. In Figs. 4(a) and 4(b) a heterogeneous
team of 5 robots is considered. Initially the robots perform cooperative localization with a fully connected RPMG
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Figure 1: True vs. theoretical covariance for a heterogeneous team of 5 robots. Solid lines correspond to the true, and
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Figure 2: True vs. theoretical covariance for a homogeneous robot group, and four different RPMG topalogies.
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Figure 3: True vs. theoretical covariance for a homogeneous robot groups, of different sizes. The RPMG has been
considered fully connected for these simulations.
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Figure 4: The effects of RPMG reconfigurations for a heterogeneous team of 5 robots.

topology, att; = 250sec the topology changes to a different one, ang at 500sec, the graph resumes its initial,

dense topology. The solid lines show the simulation results, while the dashed ones represent the theoretically computed
steady state covariance, evaluated for the first graph topology. The intermediate topology for Fig. 4(a) is a ring graph,
while in Fig. 4(b) in the time intervat,, ¢2) no relative position measurements are recorded. For both of these cases,
we observe that the steady state covariance of the position estimates in the last phase is identical to the covariance
that would result, had no RPMG reconfigurations taken place. Thus the theoretical results of the previous section are
validated.

3.3 Cooperative Localization in 2D

We now turn our attention to the more practical case of mobile robots moving in two dimensions. The difference
compared to the one-dimensional case, presented in Section 3.2, is that the coefficients of the Riccati equation are now
time varying, and a closed form solution for the covariance cannot be obtained. We thus provide upper bounds for the
steady state uncertainty, in a manner analogous to the discrete-time case.

3.3.1 Position propagation

We first study the influx of uncertainty to the system, due to the motion of the robots. The continuous time kinematic
equations for théth robot of the team are

() = Vi(t) cos(u(t)) (120)
gi(t) = Vi(t)sin(¢;(t)) (121)

whereV;(t) andw; (t) are the linear and rotational velocity of the robot at timeJsing measurements from the robot’s
proprioceptive sensors, and the estimates for the robot’s orientation, we can write the following set of equations for
propagating the estimate of the robot’s position:

Bi(t) = Vin,(t) cos(di(t)
§it) = Vi (t)sin(e4(1))

whereV,,,, (t) = Vi(t)—wy; (t) are the measurements of the translational velocity of the robot, contaminated by a white
zero-mean Gaussian noise process, whose covariance funciipia {6 — 7). In the previous expressions;(t) is the
estimate of the robot’s orientation at timeThe errors in the orientation estimates(t) = ¢;(t) — ¢;(t) are modeled
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. . . ) ~2 . . :
by a white zero-mean Gaussian noise process, whose van@ce, E{¢; }is bounded. The variance of the noise
in the velocity measurements, as well as in the orientation estimates, is determined as discussed in Section 3.1.
By linearizing Egs. (120), (121), the position error propagation equations for the robot can be written as

{ Zi(t) } { cos(i(t)) =V, (1) sin(éi (1)) } { v (1) }
vi(t) sin(¢i(t))  Vin, () cos(¢i(t)) 0)
& Xi(t) = Fi(t)Xi(t) + G, (t)Wi(t) (122)

whereF;(t) = 0342, and

2
oy, 0
Qultr) = EOOWI 0} = | ¥ 5 |- (123
is the covariance function of all sources of uncertainty, i.e., the errors in velocity measurements and the errors in the
orientation estimates. The matiix., @, GZZ_ that describes the influx of uncertainty to the system due to noise in the
robot’s odometry and orientation estimates, is given by

o cos?(B(1)) + o2VA (1) sin®(b(1)  (oF — o3VA(1)) sin((1) cos(@(1))
(% — o3V2(0) sin(6(1) cos(@(1)) 0% sin(9(8)) + o3V (1) cos?(H(1))

It becomes clear that this is a time varying matrix, depending on the robot’s velocity and orientation. Using this matrix
in the Riccati equation that describes the time evolution of the position uncertainty ofirelmitld preclude the
possibility of deriving a closed for solution for the covariance in the general case.

In the derivation of the upper bound for the uncertainty of the robots’ position estimates it is useful to employ the
average value of the matrix in Eq. (124) (cf. Section 3.3.3). This value is computed by averaging over all values of the
orientation of the robot, and is easily shown to be

Gci Qci GZ: =

U‘Q/i + 05)1/ V2

Izx2 = qilax2 (124)

When no relative positioning information is available the covariance of each robot is propagated using only odometric
information, and the covariance of thih robot is described by the Riccati equatiBn= G.,Q., GCT It is easy to

verify that the trace chLQ(lGT is equal ta2q;, thustrace P; = 2¢;. Under the realistic assumption that on average

the covariance of the position estimates along the two coordinate axes is Bquéd) = P,,, (t), we can write

ﬁzri (t) = Pyyl t) = a (125)

i.e., uncertainty grows linearly with time at a rate@f(cf. Fig (7)). This rate depends on the accuracy of both the
odometry and the orientation estimates of the robot, as well as on its velocity. Eq. (125) shows that if the robots of the
team have different sensor noise characteristics, and they all localize independently, the rate of uncertainty increase for
each of them will differ. This result should be contrasted with the case in which the robots perform relative position
measurements, presented in Section 3.3.5.

3.3.2 Exteroceptive Measurement Model

The description of the exteroceptive measurement model is identical with the one presented in Section 2.2 for the
discrete-time case. The only difference is that the time-step arguitiemt$) are now substituted by time arguments

(t), and the covariance matrices are evaluated using the variance computed for the equivalent system model, as ex-
plained in Section 3.1. Additionally, the upper boult,, for the matrixR,(¢) is identical to the one derived for the
discrete time, in Eqg. (35). To avoid redundant derivations, we do not present the analysis here, and simply state the
final result. The quantity of interest for the continuous time analysis is the matrix expressing the total information
available to the estimator at each step, given by:

N
H ' oR ' 0Ht) = > H] 0R; ) H(1)

i=1
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whereH;fF(t)Ri‘l(t)Hi(t) is the information provided by the measurements performed by rolgé haveH ;(t) =
E}g (t)H,,, andR;(t) = E; 0ORo, ()8 (1) where all the quantities appearing in these expressions have been defined
in Section 2.2. We can thus write

N
ZHiT(t)R;l(t)Hi(t)

H" )R (1)H(t)
= Z HJE; 0 OR, ©E; 0E] 0H,,

= ZH Sl H (126)

3.3.3 Bounds for the Uncertainty at Steady State

In this section we formulate the Riccati equation for the error state covariance of the robot team and outline the steps
that yield an upper bound for its solution. The error state vector for the entire robot team is defined as the stacked
vector containing the position error vectors of Allrobots (cf. Eq. (122)), i.e. a vector of dimensi®N. Since the
proprioceptive measurements of tNerobots are uncorrelated, the maté¥' QG for the Riccati equation is

G"QG = Diag(GT Q.,C.,) (127)

whereDiag(G? Q.,G.,) is a block diagonal matrix, whose nonzero submatrices are the system noise covariances of
each of the robots of the team. Thus, noting that the state transition matrix in continuous fime & 2y, and
substituting from the previous expression and Eq. (126) into Eq. (87), yields the following Riccati equation for the
covariance of the position estimates:

P = Diag(GL, ()Q., )Ge, () —P > HI R, 't)H,, P (128)

It becomes clear that this is a matrix differential equation with time-varying coefficients, and thus a general closed
form solution to it cannot be derived. However, by employing the following lemma it is possible to derive an analytical
expression for an upper bound on the covariance.

Lemma 3.3 The maximum expected uncertainty for the position of a group of mobile robots performing Cooperative
Localization is bounded by the solution of the following constant coefficient Riccati equation

P=Q-PH'R;'H, P (129)

whereQ = E{Diag(G! Q.,G.,)} = Diag(q;I2x2) is the average rate of noise influx due to the odometric mea-
surements, anfl! R, 'H, = Y, H) R, 'H,,.

Proof The proof of this lemma is straightforward, and follows from the fact ®at > R,,. Specifically, we have
that

R, = R,,i1=1.N=
> H'R,'H, = Y HI'R,'H, =
Diag(GL Q.. G.,) —PH!R, 'H,P = Diag(GLQ.,G.)—-PHIR,'H,P =
E{P} = E{Diag(G{ Q.,G.)} - E{PHR,'H,P}
< E{Diag(G!Q.G.,)} — E{P}H] R, 'H,E{P}
= E{P} < Q-PH'R;'HP=P

where we have employed Jensen'’s inequality and the fact that the fugf¢ion= PHZR;lHOP iS matrix convex
in P [14]. By setting the right hand side argument of the expression in the last line ed@ahtRiccati equation il

(Eq. (129)) is formed. Sinc&{P} < P, by selecting the initial conditions fd? equal to those foP, it is clear that
the solution to (Eq. (129)) is an upper bound for the expected positioning uncertainty of the robots.
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We point out that in Eqg. (129) we have replaced the matrix representing the information of the exteroceptive
measurements with its lower bould R 'H,,. This lower bound corresponds to the case of a time invariant system,
in which the exteroceptive measurements provide less (or equal) information than the information provided in the real
system of the robot team. Additionally, the covariance of the system noise in the time invariant system is equal to the
average covariance of the system noise in the real system. Therefore, the fact that the covariance of the estimates in
the time invariant system is an upper bound on the covariance of the position estimates for the robots makes sense
intuitively.

In order to solve the constant coefficient Riccati equation in Eq. (129), we first define the normalized covariance
matrix:

P.() = Q /*P(t)Q "/

Substitution in Eq. (129) yields the Riccati equation for the normalized covariance:
P, (t) = Lnxon — Po(t)QV?H, R TH, Q2P (1) (130)
We defineC = Q'/?HI R 'H,Q'/?, and by substituting we have:
P, (t) = Lnxan — P (t)CPy(t) (131)

To solve this Riccati equation, we substiti®, (t) = A(¢t)B~1(t), and we form the Hamiltonian matrix of the
system;H,. The derivation is analogous to the one-dimensional case which we have already presented, and yields the
following solution forA (t), B(t):

B(t) | _ .t | B(0)
{ A(t) ] = A0) (132)
where the Hamiltonian is given by
Hy = O2nx2n C (133)
Ionxan  Oanxan

Note the similarity of this system of equations with the system described by Eq.s (93) and (94). If we denote the
Singular Value Decomposition & by C = UAUT itis evident that the solution foA (t) B(t) is given by

B(t) | s | Lonwan | 1U diag (eMi! j e’)‘:t) UT + iU diag (A;(eM! — e~ 1)) UTP,,(0)
o P, (0) o %U diag (%) UT + %U diag (e"it + e_)"'t) u’p,(0)

where thei-th eigenvalue of the symmetric mati€ has been denoted a3. In order to determine the covariance at
steady state, we follow a course analogous to that of the 1D case. From the above formula we derive the following
expression for the normalized covariance:

P.(t) = LU dia Ao U” 4 1Udia (M + e M) UTP,(0) | x
n = 5 g X, 9 g n
-1
1 1
X <2U diag (e)"it + e_>"it) U’ + §U diag (/\i(e)‘it - e_AT‘t)) UTPn(O))
: Mt — e Nt : it =i\ 71T
= U dlag Ai + dlag (6 +e * ) U Pn(O)U X
x (diag (e)"it + e*}‘it) + diag ()\i(e)‘it - e*Ait)) UTPn(O)U)71 u’
= UK+ LPR)(L+AKPy)'U” (134)

Where we have denoted o
e b

efkit
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L = diag (e)"t + e_)‘it)

and
Py =UTP,(0)U

Note that in the definition oK, a problem arises when none of the robots receives position measurements. In this
case, as shown in Appendix E.2, there exist two eigenvalu€sazfual to zero. However, analogously to the 1D case,
the quantity under consideration can be shown to exist, and equals

erit—em i

. At
K — l diagyn_o (/\7) 02N -2)x2) ] (135)
O2x (2N —2) 2t Iy

In order to preserve the clarity of the formulas, we will use the initial, less strict notation in the following derivations,
bearing in mind that its true meaning is given by the last expression.

In the following, we determine bounds for the steady state uncertainty of the robots. This is accomplished by
examining the behavior of the solution for the covariance after sufficient time. Notice the similarity of Egs. (134) and
(97). Applying analogous derivations, it is straightforward to showEhgtt) can be written as:

P,(t)=U (KL—1 AL Py (Tanxon + AKL71R) ! L—l) u? (136)

The behavior of the steady state covariance of the robots’ position estimates depends on the availability of absolute
positioning information. When absolute position measurements are available, all the eigenvalues o€Cnaaierix
positive, and the system of robots is observable from a Control Theoretic point of view. On the other hand, when
the robots perform only relative position measuremeftdhas two eigenvalues equal to zero, and the system is
unobservable (the proofs for the rank@fcan be found in Appendix E.2). The two cases are examined separately in
the following.

3.3.4 Observable System

If at least one of the robots receives absolute position measurements, all the eigenvalues pbsitive, and thus:

1 eMt — e it it Aty 1
tlg(r)lo KL = flgrolo diag (M) diag (e et )
1
lag (}\l>
Also
. 1 1 -15 1 1/2 -1
tllnolfL Py (Ionxen + AKL™'Ry) L = OnxnDD (IQN><2N +A Po) Onxn
= Onxn
Using the above two results, it is
Jim Po(t) = Jim U (KL~ + Py (Inon + AKL™'R) T L7 U7

1
= Udiag <>\) u?t

2

and therefore the upper bound for the position estimates’ covariance at steady state is

P.(t) = Q”sziag(;) uTQ!/?

7

Q1/2 /C_1Q1/2 (137)

Notice that the steady state uncertainty when at least one robot receives absolute position measurements is independent
of the initial uncertainty. This result should be compared with the result for the case of an non-observable system,
which we derive in the following.
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3.3.5 Non-Observable System

When none of the robots has access to absolute position measurements, the two smallest eigevahgesqfal to
zero, i.e.\any_1 = Aoy = 0. In this case,

KL !

Ait =it _
ding (e;) ding (M1 + e~ 30)

eXit _o—Ait

_ [ diagQN_Q (W) 0(2N72)><2
O2x(2n—2) 0252

i Oen-2)x@env—2) O@Nn—2)x2
025 (2n—2) tlaxa

But we note that
. eXit o= Xt . 1
lim diagyn— (Al(e*iwe—*z‘t)) Opn-2)x2 | _ | diagoy_o (r) 0 2n—2)x2
oo O2x (2N —2) 0 O2x (2N —2) 0252
and thus at steady state the telil.—' becomes
. 1
(KLil)ss _ [ diagon_o (x) O@an—2)x2 ] (138)
O2x (2N —2) tlrxo
Also,

lim 4L ' Py (Tawxen + AKL ™' R) ' L7! =

t—o0o

lim 4 | diagan—2 (ﬁ) Ocan—2)x2 Py (Ianxan + AKL ™' Ry) ™" diagyy s (ﬁ) Oan—2)x2
fmreo O2x (2n—2) 2Dx2 O2x(2n-2) 2D%2

_ [ Oen—2)x@n-2) Op@n—_2)x2 ]Po ([2N><2N+A1/2P0)71 [ Oen-2)x@eNn-2) O@n-2)x2 }

O2x(2n-2) Iy O2x (2n-2) Lyo
We denote
mi1 mi2 mi(2N)
—1 .
PO(I2N><2N+A1/2PO) =
meN-1)1 M@N-1)2 - M@2N-1)2N
mM@N)1 m@N)2 - M@2N)(2N)
and thus
Jim AL Py (Ionson + AKL T R) T L7! =
mi1 mi2 manN
_ [ O an—2)x(2N-2) 0(2N—2)><2:| : : : : |:0)><(2N—2) O 2N—2)x2
025 (2n—2) Ioxo MEN_11 M@EN-1)2 - T(@N_1)2N 025 (2n—2) Iyyo
MmNy m@enN)2 <o M2N)(2N)
[ 0 0 0
0 0 0
_ : : : Opn-2)x@en-2) O@n—_2)x2
’ ’ 02><(2N—2) Iy
meN-1)1 M@eN-1)2 - M@2N-1)2N
MmN m@eN)2 - M@2N)(2N)
[ O an—2)x(2nv—2) O@n—2)x2 }
= 139
02 (2N —2) My (139)

where
My = [ MeN-1)(2N-1) MT(2N-1)(2N) ]
M@2N)(2N-1) M@2N)(2N)
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The derivation of a closed form expression idy; is analogous to the one-dimensional case presented in Section 3.2.2.
We recall that?, = UTP,,(0)U, thus

—1 —1
P (IQNXQN +AY 2PO) - UTP,(0)U (IQNXQN +AY 2UTPn(())U)
-1 —1 B
= U”P,(0) (U7) (IngzN + A1/2UTPn(0)U) (U)'u

= uU'p,
\I/T
R

= UTP,(0) (UU” + UAY2UTP, (0)ULY) U
(0) (I2N><2N + @P“O)) U

}Pn(o) (IQNX2N+\EPH(0))_1[ v V]

7P, (0) (IQNXQN n \FCP,I(O)Y1 v WP, (0) (IQNXQN n \/EPH(O)) 1%
VTP, (0) (Isz n \Epn(o)) “w VTP () (InggN ¥ \/éPn(O)) v

where we have denoted by the matrix of dimension8N x (2N — 2), consisting of the N — 2 singular vectors
of C corresponding to the nonzero singular values, an#'tiie 2V x 2 matrix consisting of the 2 singular vectors
corresponding to the two zero singular values, Le= [ V].

My can now be written as

My =VTP,(0) (I2N><2N + \Fcpn(o)> - Vv (140)

Using Eq. (136) steady state normalized covariance is thus obtained:

P.()=U ([ diagyn_o (%) O an_2)x2
O2x (2N —2) tlrxo

0en-2)x@en—2) O@n—2)x2 T
+ U
[ 025 (2n—2) My

Thus the upper bound for the steady state uncertainty of the position estimates is

Pt) = Q/°U diagyy o (%) 0(2N2)><2‘|UTQ1/2_|_
O2x (2N —2) 022

+ QU O@eN—2)x(2N—2) 0(2N2)><2:|UTQ1/2
O2x(2n—2) My

+ QU [ 0on—2)x(2N—2) O@N—_2)x2 ]UTQ1/2
O2x(2n—2) tlaxo

= P+ P+ P5(t) (141)

In the above relation, the teri, is a constant term, that is independent of the initial uncertainty of the robots. The
term P, can be written as

0 0
Po(f) — /21y { @eN-2)x(2N-2) Uen-2)x2 } urQl/?
() Q 025 (2N —2) My Q
0 0 gT
121 g v 2N-2)x(2N-2) O@n—_2)x2 1/2
Qo v]| g tene | U Je
1
— Q2VVTP,(0) (IQNXzN + @Pn(O)) vvTQL/? (142)
In Appendix E.2 we show that
gr 0 gr

T T T —1/2 O gr 0 - ~1/2

VvV: = U2N71U2N71 + UQNUQN = Q qr 0 qr - Q (143)
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whereU,y_; andU,y are the eigenvectors associated with the zero eigenvalU@sarid therefore
1 0 1 1 0 1
0 1 0 -1 01 0
1 01 Q '/*P,(0) (IszzN + \FCPn(O)) Q' 1 0 1

Py(t) = a7 (144)

wherel =37 L,
From t?1e above expression we can see that the valie isfindependent of the specific choice of the singular vectors.
In order to further simplify the expression fét,, and to reveal the special structure of this matrix, we choose for

simplicity the following singular vectors for the zero singular values:

1
0
Uan_1 = arQ /2 (1)
and
0
1
Uan = arQ~Y/? (1)

Using these we obtain

-1
My = VTP,(0) (12N><2N+\/6Pn(0)> v
ro 117 10
10 1 0 1
= ar| 0 1| Q2P (0) (kvean +VOP,(0)) Q2| L0
00 0 1
o 11" 10
10 1 0 1
= ar| 0 11 QPO)Q (Byvey +VOQTPPOQ?) @7 | 10 14s)
We introduce the notation
-1
W =grQ 'P(0)Q " (Lyax +VCQ2P0)Q2) Q12
and we set
MN:H ?} (146)

Due to the special structure ¥f, « is the sum of all the elements 8 whose both indices are oddjs the sum of
all the elements with two even indices, apt the sum of all the elements with an odd row index and an even column
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index. Due to symmetryj = . Using Eq. (141) we obtain

0 0
P = 1/2U{ (2N-2)x(2N-2) (2N—2)><2:|UT 1/2
’ Q O2x (2N —2) My Q
0 _ _ 0 _ (Ql/Q\I’)T
_ 1/2yy 1/2y [ eN-2)x(2N-2) O@n-2)x2 ] [
LQ Q ) 025 (2N —2) My (QY/2v)T
[ 1 0
0 1 0 0 L(QUQ\I/)T
LQUQ\IJ 10 (2N—-2)x(2N-2) (2N—-2)x2 Var
= qr | Var 0 a 101 01
0 1 2x(2N-2) v 4 01 010
- o B
; v 0 (@)
= qr aNx(2N-2) @ 3 1 01 0 1
v 9 01010
[ o B a p
vy § v 9
= g |@ P ap =qrlnxn @ My (147)
v 40 v 9
Using analogous derivations, it is straightforward to show that
1 010
01 01
P3(t) =tqr (1) (1) (1) (1) =t qrinxn ® Iaxo (148)

Using equations (147) and (148), the final expression for the maximum expected uncertainty at steady state becomes:

_ di (i) Oran—
P.(t) = QU [ DA CN=2x2 1 T QY2 4 gplyun @ My +t qrlnxn @ Tox{149)
O2x (2N —-2) 02x2

Thus the following lemma has been proven:

Lemma 3.4 The maximum expected steady state uncertainty of a group of mobile robots performing cooperative
localization is given by:

_ di (i) Ofan
P..(t)=Q'°U l NS CN=2x2 |\ UTQY2 4 grlnun @ My 4+t qrlnxn ® Ioxs  (150)
O2x (2n—2) O2x2

N 1

1
where_— =37, -

_|a B
My = { v } (151)
and the parameters, 3, v, ¢ are defined as follows: Let
-1
W = [wy;] = ¢rQ~'P(0)Q /2 (IszzN + \/EQ_UQP(O)Q_UQ) Q'

Thena = 3",
sum of all elements with two even indices, gne >
and an even column index. Due to symmeiry; .

; odd Wij is the sum of all elements 8 = [w;;] whose indices are both oddl,= 3, ; .., wi; is the

w;; is th sum of all elements with an odd row index

i odd,j even
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The first term of the above equation is a constant term, whose value depends on the topology of the RPMG and the
characteristics of the sensors of the robots. The second term is a constant term that depends on the initial uncertainty,
as well as the characteristics of the robots and the RPMG topology. Finally, the last term contributes with a constant
rate of uncertainty increase that is proportionajto At this point we should note that the rate of uncertainty increase
is independenbf the initial uncertainty P(0), the accuracy of the relative position measurements and the topology of
the RPMG. From the definition afr, it becomes clear that will it be smaller than the smallest ofjtfe(notice that
the definition ofyr is analogous to the expression for the resistance of resistors in parallel). This implies that it suffices
to equip onlyonerobot in the team with proprioceptive sensors of high accuracy, in order to achieve a desired rate of
uncertainty increase. All the robots of the group will experience an improvement in the rate at which their uncertainty
increases, and this improvement is more significant for robots with sensors of poor quality. We further discuss the
significance of Eg. (150) in the last section, where the results of our simulations are presented.

3.4 RPMG Reconfigurations

The preceding analysis assumes that the topology of the graph describing the relative position measurements between
robots does not change. However, this may be difficult to implement in a realistic scenario. For example, due to the
robots’ motion or due to obstacles in the environment, some robots may not be able to measure their relative positions.
Additionally, the robots should allocate computational and communication resources to mission-specific tasks, and
this may force them to reduce the number of measurements they process for localization purposes. Consequently, it is
of considerable interest to study the effects of changes in the topology of the RPMG on the positioning performance
of the team.

In this section we show that the same property that holds for the covariance of the position estimates in the 1D case
(Lemma 3.2) holds also for thgpper boundf the covariance in the case of robots performing cooperative localization
in 2D. The derivations are analogous, with only minor modifications, to account for the fact that in the 2D case, the
expressions provide an upper bound on the expected covariance, rather than an exact solution.

The following scenario is examined: At the initial stage of the deployment of a robotic team (Phase 1), the RPMG
has a topology A, e.g., the complete graph shown in Fig. 8(a), and retains this topology until timetiystdren it
assumes a different topology B, e.g., the ring graph shown in Fig. 8(b). We refer to the time interval during which
the RPMG has topology B as Phase 2. Finally, at a second time irtstafite RPMG assumes the initial topol-
ogy, A, once again (Phase 3). We assume that the time intdals), (¢1,t2) are of enough duration in order for
the transient phenomena in the time evolution of uncertainty to subside. For this scenario, the following lemma applies:

Lemma 3.5 The maximum expected steady state covariance of the robots during Phadergitalto the maximum
expected uncertainty the robot team would have if no RPMG reconfigurations had taken place. This result holds also
for the case that during Phase 2 the robots perform DR (i.e., the RPMGesty graph

Proof We start the proof by noting that at timethe normalized covariance will be

: 1
PnA(tl)zUA[dlagzNz(“i) dene g (152)
02 (2n—2) t1laxo + Ma
where
-1
My = VIP(0) (Lxxen +v/CaPu(0))  V

and the subscripfl has been appended to quantities that depend on the topology A.

At time ¢, the topology of the RPMG changes, and in order to compute the steady state covariance during the
Phase 2, the covariance of the position estimates at#jnerequired. If during Phase 2 the robots perform Dead
Reckoning, then at tim&, their normalized covariance will be

P, (L) = Ua [ diagyn_o (AlA) + (t2 —t1)loan—2)x(2N-2)  O@2n—2)x2 ] Ut (153)
np
O2x (2N —2) taloxo + Ma
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while if the RPMG topology during phase 2 is a connected one, atitime have

3 1
P, (t) = Uy | T82n-2 (=) Oan—2)x2 U}, (154)
O2x (2N —2) (t —t1)Iax2 + Mp
where
Mg = VTP, (1) (IQNXQN n \/CBPn(tl)) v (155)

and the subscripB denotes quantities associated with RPMG topology B. At this point we note that for computing the
value of M, theexactvalue of the covariance at tinte, would have to be employed. Howevét, (¢, ) is provides

(after pre- and post multiplication wit®'/2) an upper bound on this covariance value. This is not a problem, since in
Appendix | it is shown thaf\/z is a matrix increasing function @,,(¢;), i.e.,

P, ~P,= My > Mg (156)

Therefore, by employing the upper bound of the covarianag,ahe resulting expression remains an upper bound

of the covariance during Phase 2. Thus, we are able to use the preceding expression in the derivations, since we
only seek an upper bound of the steady state covariance during Phase 3. This is the only difference in the proof of

Lemma 3.5, compared to Lemma 3.2. By comparison of the expressions in Egs. (152)-(155) with those presented in

Section 3.2.3, it becomes clear that by following derivations analogous to those for the 1D case the proof of Lemma 3.5

is straightforward.

This result is of great practical significance, and shows that if the robots of a team are forced to perform a small number
of measurements (or even resort to mere DR) during a stage of their mission, due to communication or sensor failure,
or in order allocate CPU and bandwidth resources to different tasks, then upon reverting to the initial RPMG topology,
the team’s positioning performance will have sustaineddegradation Additionally, it shows that it is beneficial

to choose a dense topology for the RPMG during the initial phase of the deployment of a robot team. This may be
possible for example, if during this initial phase the robots do not perform any other time-critical tasks, and are able
to allocate a large proportion of the team’s resources for localization purposes. As the robots start performing other
tasks the RPMG topology may have to be reduced to a sparser one, in order to save computational and communication
resources. However if, at a subsequent time instant, the RPMG resumes the initial, dense topology, the above lemma
guarantees that the maximum expected uncertainty wiltlbetical to the one that would arise if the dense RPMG
topology were retained throughout the run of the robots. We remind that Lemma 3.5 holds under the assumption that
the RPMG remains in each topology for sufficient time in order for the transient phenomena to die out.

3.5 Simulation Results

A series of experiments in simulation were conducted, with the aim of validating the preceding theoretical analy-
sis. Robotic teams of different sizes and several topologies of the RPMG are considered, and the covariance values
predicted by our theoretical analysis are compared to the experimental results. For the simulations the same two-
layer approach to the estimation of the robot's pose is employed, that was used in the derivation of the theoretical
bounds. For our experiments, the robots are restricted to move in an area ofrradi@m, thus the maximum
allowable distance between any two robotgjs= 40m. The velocity of all robots is assumed to be constant, equal
to V; = 0.25m/sec. Note however, that our analysis does not require all the robots to move at the same speed. The
orientation of the robots, while they move, changes randomly using samples drawn from a uniform distribution.

The parameters of the noise that corrupts the proprioceptive measurements of the simulated robots are identical
to those measured on a iRobot PackBot rolagt & 0.0125m/sec,o,, = 0.0384rad/sec). The absolute orientation
of each robot was measured by a simulated compassowitl 0.0524rad. The robot tracker sensor returned range
and bearing measurements corrupted by zero-mean white Gaussian noisg with01m andsy = 0.0349rad. The
above values are compatible with noise parameters observed in laboratory experiments [15]. All measurements were
available at 1Hz.

In order to demonstrate the validity of the derived formulas for the steady state localization uncertainty of the
robots, in Fig. 5 we plot the true value vs. the theoretical bound for the covariance alongiie of two robots
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performing cooperative localization. For this specific experiment the parameters for the proprioceptive sensors of
the robots were chosen so that one of the robots has 5 times less accurate measurements (i.e, for dkis=obot
0.0625m/seco,, = 0.192rad/sec). As evident, the true covariance consistently remains below the maximum expected
value predicted by the theoretical analysis. This behavior for the localization uncertainty is a typical example of the
results of our simulation experiments. In order to preserve the clarity of the figures in the following, a homogeneous
robot team (i.e. a team whose robots are equipped with sensors of equal accuracy) is considered for the rest of the
simulations. Note however, that homogeneity is not a prerequisite of our approach, as Fig. 5 demonstrates.

In Fig. 6 the theoretical upper bound for the expected localization uncertainty is compared with the true covariance
provided by the simulations. Robotic teams consisting of 3, 5, 7 and 9 robots are considered, and in each plot, the
theoretical bound as well as the true covariance for a fully connected RPMG and a ring RPMG are presented. In each
plot, the true covariance is the average covariance over 20 runs of the simulation experiments. It becomes evident that
the theoretical bound for thrate of uncertainty increase is quite tight, especially as the size of the team increases. We
may also note that for the two radically different RPMGs considered (i.e a fully connected vs. a ring graph) the rate of
uncertainty increase is identical, thus validating what was predicted theoretically. From comparison of the four plots
in Fig. 6 we observe that for small teams, the difference in the localization uncertainty for two RPMG topologies is
almost negligible. This implies that the performance improvement from employing a fully connected graph for the
relative position measurements (and thus using up computational resources and communication bandwidth) are very
small for small groups of robots, and the use of a sparser graph, (allowing for the allocation of computational and
communication resources to other tasks) is favored.

In Fig. 7 the localization uncertainty evolution is presented for a team of 9 robots with changing RPMG topology.
Initially, and up tot = 200sec the robots do not record any relative position measurements, and propagate their
position estimates using Dead Reckoning (DR)z At 200sec the robots start receiving relative measurements, and
the topology of the RPMG is a fully connected one (Fig. 8(a)). The significant improvement in the rate of uncertainty
increase that is achieved by using relative positioning information is demonstrated in this transittos. @0sec
the RPMG assumes a ring topology (Fig. 8(b)). We note that the uncertainty undergoes a transient phase, during
which it increases at a higher rate, and then, as soon as steady state is reached, the rate of increase is identical with the
rate associated with the fully connected graph. This validates the result of Eq. (150), and shows that the dominant
factor in determining the localization uncertainty for a team of robots is the quality of their proprioceptive sensors.
At t = 600sec a supposed failure of the communication network occurs, and in the time interval bébfrseen and
800sec only two robots are able to measure their relative position, (Fig. 8(c)). This case can be viewed as a degenerate
case, where the 7 robots localize based solely on Dead Reckoning, while the other two robots form the team. We can
observe that the rate of increase of the covariance is larger when the team consists of only two robots, instead of nine.
At t = 800sec the RPMG assumes a non-canonical topology, i.e., random graph (Fig. 8(d)). This case is perhaps
the most important for real applications, since robots will usually measure the distances of their neighbors, and due to
the robots’ motion, the topology of the RPMG can change randomly. In this case, the uncertainty increases at a rate
identical to that of cases | and Il of the graph’s topology, as predicted by our theoretical analysis. It is also apparent,
that the uncertainty for each robot converges to a set of lines with the same slope (rate of uncertainty increase), but
different constant offset. This is due to the effect of the different degree of connectivity in the RPMG of each robot.
Connection-rich robots have access to a higher rate of positioning information flow, and thus attain lower positioning
uncertainty.

At t = 1000sec only one of the robots starts receiving GPS measurements while the RPMG retains the topology of
(Fig. 8(d)) The GPS measurements are corrupted by noise with a standard deviatignsof 0.05m in each axis.

It is evident that the availability of absolute position measuremengmyaobot drastically reduces the localization
uncertainty forll the robots in the group. Furthermore, the system becomes observable and the uncertainty is bounded
for all robots in the group. As in the previous case, the constant value at which the uncertainty for each robot converges
to depends on its degree of connectivity.
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A Upper Bound Riccati Recursion

In this appendix we prove thatR,, = R, (k) andQ,, > Q(k) for all £ > 0, then the solutions to the following two
Riccati recursions

Pi1 = P,—P.H! (HPH! +Ry(k+1) HPj+ Qe+ 1) (157)
and
1

i = Py—-PyH! (H,P/H] +R,) H/P}+Q, (158)

with thesameinitial condition, P, satisfyP} = Py, for all £ > 0. The proof is carried out by induction, and requires
the following two intermediate results:

e Monotonicity with respect to the measurement covariance matrix
If R; > Ry, then for anyP = 0
P - PH” (HPH” + R,)  HP + Q, - P — PH” (HPH” + R,)  HP +Q, (159)

This statement is proven by taking into account the properties of linear matrix inequalities:

Ri = Re=
HPH” +R; = HPH" +R,=
(HPH +R,) < (HPH' +R,) =
PH” (HPH” +R,) HP =< PH’ (HPH' +R,)  HP =
~-PH” (HPH” +R,)  HP » —PH’ (HPH' +R,) HP =
P-PH" (HPH" + Rl)’1 HP+Q, = P-PH" (HPH" + Rg)’1 HP + Q,

e Monotonicity with respect to the state covariance matrix

The solution to the Riccati recursion at tirke+ 1 is monotonic with to the solution at tim, i.e., if Pg) and

Pf) are two different solutions to the same Riccati recursion at fiqneith P,(:) = P,(f) thenPEiZ1 > P,(fll.

order to prove the result in the general case, in WITPéH andP,(f) are positive semidefinite, we use the following
expression that relates the one-step ahead solutions to two Riccati recursions with id&@n@cahdR matrices, but
different initial valuesP\" andP'* ([11]). Itis

In

P2 —P —F,, ((P,(f) - Pﬁj)) - (Pf) - P,S)) HT (HP}f)HT + R) H (P}f) - P,g1>)) FT, (160)

whereF, j is a matrix whose exact structure is not important for the purposes of this proof. Since we have assumed
Pg) = P,(f) we can WriteP,(f) - P,(Cl) = 0. Additionally, the matrix

(P - (") HT (HPPHT + R) H (P - P{)

is positive semidefinite, and therefore we have

- (P -PY)H" (HPPHT + R)H (P -P[)) < 0=

(P -PY) - (PP -P)H" (HPPHT + R)H (PP -P)) = 0=

B (PP - P) = (PP - P HT (HPPHT + R)H (P - P[V)) FT, < 0=
Pl(fll - chlle =0
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The last line implies thal)gj1 = P,(jzl, which is the desired result.

We can now employ induction to prove the main statement of this appendix. Assuming that at some timé instant
P} > P,, we can write

P4, = P/-P/H! (H,P/H]+R,) HP!+Q,
~ P,-P;H! (H,PH! +R,) H,P;+Q,
~ P,—PH’ (H,P,HY +R,) HP +Qk+1)
= P,— P;HT (H,P;H + Ro(k+ 1)) HP, + Qk+1) =Py

where the monotonicity of the Riccati recursion with respect to the covariance matrix, the prapektyQk + 1)

and the monotonicity of the Riccati recursion with respect to the measurement covariance matrix have been used in the
last three lines. ThuB; = P; = P | = P;, . Fori = 0 the conditionP} = P; holds with equality, and therefore

for anyi > 0, the solution to the Riccati recursion in Eq. (157) is an upper bound to the solution of the recursion in
Eq. (158).

B Riccati Recursion for the Upper Bound on the Average Covariance

In this appendix we prove thatR andQ are matrices such thi&t = F{R,(k)} andQ = {Q(k)} for all k > 0, then
the solutions to the following two Riccati recursions

Piy = Py —PH?T (HPH? + Ro(k+1)  HoPj + Qi+ 1) (161)
and
B B 5 117 5 7 L p) ! B A
Py = Pp—-PH! (HPH, +R) H.P:+Q (162)
with the sameinitial condition, Py, satisfyP; = E{P,} for all £ > 0. We first prove a useful intermediate result:
e Concavity of the Riccati recursion

We note that the Riccati recursion
-1
Pey1 = Py—PH" (HPH" + Rey1)  HPy+ Qppa (163)

can equivalently be written as
_ P. 0 I
w5 (6]
H

o[ L [ S L YD) e[l ][]
+ Qi1

our goal is to show that the above expression is concave with respect to the matrix

o a]
0 Ry

A sufficient condition for this is that the function

f(X) = AXB(CXC") "' BTX AT (164)
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is convex with respect to the positive semidefinite makixwhenA,B,C are arbitrary matrices of compatible dimen-
sions. This is equivalent to proving the convexity of the function of the scalar vatiable

fult) = A(X, +t20) B (C(X, 4+ t2,)CT) "' BT (X, +2,) AT (165)

with domain those values offor which X, +¢Z, = 0, X, = 0 is convex [14].f;(t) is convex if and only if the scalar
function

Folt) = 2T A(X, +tZ,) B (C(Xo + tZ,)CT) ™ BT(X, +tZ,) ATz (166)
is convex for any vector of appropriate dimensions [14]. Moreover, it is well known that a function is convex if and
only if its epigraph is a convex set, and therefore we obtain the following convexity conditigii Xor.
f(X) convex < {s,t|zTA(X, +tZ,)B (C(X, + L‘ZO)C'T)_1 BT (X, +1Z,)AT2 < s} is convex
However, from the properties of Schur complements it is well known théyg i+ 0 then

{AO B,

B C. ] ~0&C,—BIC;'B>-0

In our problem, the matrix’'(X, + tZ,)C7 is clearly positive definite, and thus we can write

C(X,+tz,)CT BT(X,+tZ,)ATz

T T\~ 1 KT T
2T A(Xo+tZo)B (C(Xo +tZ,)CT) " BT (Xo+tZ,) ATz < 5 & { STACX, +12,)B 5 =

However, the defining matrix inequality of the epigraph is equivalent to

T RpTy AT T RT 7 AT
cX,C BXOAZ}+t|:CZOC BZOAZ]+S[

0
2TAX,B 0 2TAZ,B 0 1

0
HE
which defines a convex set {n, ¢) [14].

Thus, by the preceding analysf$.X) is a convex function, and consequenily, ; is a concave function of the

matrix
P 0
0 Rpy

We now employ this result to prove the main result of this appendix. The proof is carried out by induction. Assuming
that at time ste the inequalityP;, = E{P} holds, we will show that it also holds for the time step- 1. We have

Piy = Pp—PH? (H,PH? + Ro(k+1)) H,Py+ Qh+1) =
E{Pis1} = E{Py-PH! (H,P.H! + Ro(k+ 1) H,Py + Qi+ 1)
= E{Pj, - PyHY (H,PLHY + R,(k+1) H,Py} + E{Qk+ 1)}
< E{P.} — E{P}H! (H,E{P:}H” + E{R,(k+ 1)})  H,E{P.} + E{Q(k + 1)}

where in the last line the concavity of Jensen’s inequality was applied [14], in order to exploit tht concavity of the
Riccati. By assumptior®;, = E{P;} and employing the property of the monotonicity of the Riccati with respect to
the covariance matrix (cf. Appendix A), we can write

E{Py1} = P, —-PH] (H,PH] + E{R,(k+ 1)})71 H, P, + E{Q(k + 1)}
— P,-PHT (H,P,HT +R}) H,Pj +Q
= 15I<;-~-1

Thus,P, = E{P.} = Py1 = E{Py,1}. Fork = 0 the conditionP, = E{P;} holds with equality, and the proof
is complete.
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C Continuous Time Riccati Equation

For a linear continuous time system, where the state measurements are available continuously, the state model equa-
tions are

(t) = F(t)z(t)+ B(t)u(t) + G(t)w(t) (167)
z2(t) = H)z(t) + n(t) (168)

whereu(t) is the input to the systemy(¢) is the dynamic driving noise process having covariaf¢g), n(t) is the
measurement noise process, with covariaR¢g, F(t) is the matrix describing the dynamic behavior of the states,
B(t) is the matrix describing the affect of the inputs on the states Al is the measurement matrix.

The continuous time Riccati equation, describing the evolution of the state covariance is

P=FP+PFT +GQG" — PH'R'HP (169)

where the time indices have been dropped for simplicity.

D Appendix: Taylor Series Expansion of the Hyperbolic Sine and Cosine
Functions

The Taylor series expansion of the exponential function is given by:

at oo aktk _ e A e
e TR TR TR TR
The above relation, when substituting instead oft yields:
e—at — ?;OM :1_a7t+ a’t? B a’t3 N a*tt o
k! 1! 2! 3! 4!

Thus, by subtracting and adding the previous two relations, we get:

e e 1 oo 1 44

#zlﬁ-aat —I—Eat + -
and

eatiefat 1

_ 133 155

The last two functions are the hyperbolic cosine and sine respectively.

E Rank and Nullspace of the Measurement Matrices

In this appendix we present some results concerning the rank of the measurement matrices in CL, as well as the rank
and eigenvectors of the matrix:
C. = Q/*H/R;'H,Q}"

Where the matriceQi/2 andR, can be substituted for either by the upper bounds, or by the average values of the
corresponding covariance matrices.
We first note that,in the case in which the robots receive only relative position measurdifgots)sists of block

rows of the form
[ O2x2 . —Ioxz . Ioxa o Oax2 |=[0 . =1 . 1 . 0]®Iye

while if the some of the robots additionally receive absolute position measurerfiEngdso has some block rows of
the form

[ 0ox2 .. Ioyo .. Ogyo ] = [ o .. 1 .0 ] ® Ioxa
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We therefore conclude, that in any case, the mdfjxcan be expressed as
H, =H®Ix2 (170)
whereH is an appropriate matrix, consisting of rows having one of the two following structures:
Hj=[0 . -1 . 1 . 0]

or
Ho=[0 . 1 . 0]

It becomes clear that the matriX will be the measurement matrix associated with a 1D CL system model, in which
the robot team has the same RPMG as the team of robots performing localization in 2D (cf. Section 3.2).
Employing the properties of the Kronecker product, from Eq. (170) we conclude that

rank(H,) = rank(H) rank(Iax2) = 2 - rank(H) (171)

and therefore we can determine the ranBRf by first studying the properties of the 1D-measurement mafri¥or
this reason, we start by presenting the results for the, simpler, one-dimensional CL case (cf. Section 3.2).

E.1 Cooperative Localization in 1D

For the one-dimensional case, when no absolute position measurements are available, the measuremBnismatrix
defined by

H=| Hy (172)

Hmn

where each row off corresponds to one relative position measurement, or equivalently, to one edge of the RPMG.
Each of the rows contains a “-1”, at the column that corresponds to theirodmistering the relative position measure-
ment, and a “1” at the column that corresponds to the robot being observed. This matrix is identicahtidéece
matrix defined for any directed graph. In [16] it is shown that the incidence matrix of a directed graph is of rahk
whenever the graph is connected, and therefore the rafkisfV — 1, where we have imposed the constraint that the
measurement graph is conneéted

Having determined the rank @f, we are now able to study the rank and eigenvectors of the matrix

C = Q1/2HTR_1HQ1/2

where@ and R are diagonal and positive definite. In order to determine the rank of this matrix, we use the following
lemma from linear algebra [16]:

Lemma E.1 The rank of the product of two matricels B is given by

rank(AB) = rank(B) — dim (N(A) N R(B)) (173)
wheredim X (Y denotes the dimension of the subspace formed by the intersection of the subSpachs, N(A)
is the nullspace of matrid, and R(B) is the range ofB.

Note that the matrix produci” R—'H can be written as7/” R~'/?R~'/?H = (R~'?H)"R~'/?>H. We now
apply the above lemma to the matrix prodddt = R~/?H. SinceR~'/2 is an invertible matrix, its nullspace is
of dimension 0, and we havenk(M) = rank(R~Y/2H) = rank(H) = N — 1. Moreover, it is evident that the

4This is not a restraining assumption. The case in which the RPMG is not connected is a degenerate one. In this case, the robots that are not
connected by an edge to any robot of the team, do not actually belong to the team, and therefore, we can study this case by a considering each
connected subgraph independently.
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nullspace oft/ will be the same with the nullspace &F. In order to find the rank off " R~ H = M M we employ
the above lemma once again:

rank(HT R~ H) = rank(M7 M) = rank(M) — dim (N(M) N R(M))

Since the nullspace and the range of any matrix are disjointisets( /7 R~'H) = N — 1. By consecutive appli-
cation of the above lemma to the matrix produds” R~ H)Q'/? andQ'/?(HT R—'HQ'/?) it is easy to show that
rank(C) = N — 1.

A direct consequence of this result is tiiahas one eigenvalue equal to zero, and that its nullspace is of dimension
1. Note that since the sum of all elements of the rows/dé zero, we obtain

H1N><1 :0N><1

hence the basis of the nullspaceféfis the vectorzy = 1yx1. As a result, we deduce that the basis vector for the
nullspace of”' is given by

1
Uy = ———7—Q 1y
Q121N || <
since
1 1
CUN — 7@1/2HTR71HQ1/2Q71/21N _ —Ql/ZHTR71 H]_N =0y
||Q_1/21N><1|| x1 ||Q_1/21NX1H ( Xl) x1
Simpe calculations show that
1 _ 1 _ _
Un = TQ 21y = 71/269 Y210 = Vatota QP 1na
Q121 N x| (ZN L)
=1 gq;
where

1 ZN: 1
Gtotal i—1 qi

Finally, by applying simple vector-matrix multiplication, we obtain the following result, which is useful in the deriva-
tions in Section 3.2:

QVPUNUEQY? = qrotarlnxn (174)

If in addition to the relative position measurements, some of the robots receive absolute positioning information, then
the measurement matrix has a number of rows (at least one) of thefforma= [0 .. 1 .. 0], with the “1"s being at
the columns corresponding to the robots receiving absolute positioning information. In thiS casebe written as

1 1
C=Q? (HTRlH +> UzH;QHw) QP =C+Q?)y ——H[ H,Q'?=C+Cy  (175)
PR\ ko Ak

where the sum is over all robots receiving absolute position measuremégtare the variances of these measure-
ments, and” is the matrix of the previous case, in which only relative position information were available.
We now prove tha€ is positive definite, by showing that'Cz = 0 < = = 0 . Assume that there exists a vector
x such that
2TCe=0=2TCr+2TCuz =0

Clearly, both terms in the last expression are always nonnegative, since the involved matrices are positive semidefinite.
ThuszTCz = 0 impliesz”Cx = 27 C 42 = 0. The termz” C'z assumes the zero value only whegs= aUy, Where
a € R andUy is the basis vector of the nullspace®@f But

1 1
G‘ZUIZ\; <Q1/2 Z QHgAHkAQ1/2> UN = a2qtotal Z 5
k T Ay k T A

and therefore this quantity is equal to zero only whes 0. Thusz” Cz = 0 = 2 = 0, which implies that when at
least one robot has access to absolute position informatiom positive definite.
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E.2 Cooperative Localization in 2D

We can now employ the results of the preceding 1D analysis to the 2D case. Using the result of Eq. (171), we
immediately see that when the robots of the a team performing CL in 2D only record relative position measurements,
thenrank(H,) = 2N — 2, while if at least one of the robots has access to absolute position measurements, we have
rank(H,) = 2N.

Regarding the rank and eigenvectorddy, it is straightforward to see that

rank(H,) = 2N = rank(C;) = 2N

since in this cas€; is the product of full-rank matrices. Similarly, we can use Lemma E.1 in the same way as in the
1D case, to show thatnk(C,) = 2N — 2. As a result, the nullspace @, is of dimension 2, and is spanned by 2
orthogonal basis vectors. We can find two such vectors by observing that

C, (Q;1/21N><1 ® 12x2) Q)/*H!R'H,Q]/? (Qs_l/21N><1 ® I2><2)
Qi/QHZRQIHo (Inx1 ® Iax2)

= Qi/QHoTRgl (H ® Izx2) (Inx1 @ Iax2)

But employing the properties of the Kronecker product yields

(H ® Iax2) (Inx1 @ Iaxs) = (Hlyx1) @ Iaxa = Oanx2

and therefore
C; (Qs_l/21N><1 ® I2x2) = 02N x2

The columns of the matriQ§1/21Nx1 ® Iz are

1

0

o= |1

1 F 0

and o
0

1

Cle;1/2 (1)

which are orthogonal (this is easily verified by computing the dot prodfict). Therefore, a basis for the nullspace
of C, is given by the vectors

1
0
c _
Upn g = —— = /3, Qs /2 | 1 (176)
lleal] 0
and
0
1
C _
Usy = o = VA Q2 |0 (177)
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where, under the assumption i@y is diagonal with diagonal elemengs, (which holds for all the cases of interest
in this work), ¢, is defined by the relation

F Onthe Use of the Zero Eigenvalue

In Eq. (95) the inverse of the diagonal matrix of the eigenvalu&s appears, which, in the case of an non-observable
system, does not exist, since the smallest eigenvalue is zero. Although this is wrong from a strict mathematical point
of view, we argue here that this notation can be justified. In order to compute the submatrix element{Zyef

have:

t3 to
"U(21) = tnun+ O+ Cl e

3 to
= tInyn + UAUT5 + UAQUT5 +---
t3 . 2t5 ' T
= U(tINXw+A5+Aa+-~)U (178)

The derivative with respect to time of the above expression is:

Ht £ ot

t? #4
= tINxN'FUAUT?—l—UAQUTE_F...
t2. th '
= U(tINxN'FA?—i—AQE_F...)UT

1
= §U diag(eM! + e MUT

_ 1U[ diagy_; (M + e ) 01y (1) } UT

2 O(N—1)x1 2

In the last line, we have simply written out the diagonal matrix, in order to underline the fact that the last element is a
constant. Integration of the above relation yields:

1

. it At
e(2,1) = 5U diagy 4 (%) 01 (Nn-1)

Onv—1)x1 2t

Ul +¢

wherec is a constant matrix term resulting from the integration operation. In order to evaluate this constant term, we
note from Eq. (178) that’'°(2, 1) = 0, thus substitution in the above relation yields: 0, and therefore

. eNit =it
th(Q,l) = %U diagy_, (,\71) O1x(v-1)

uT (179)
Ov—1)x1

This last relation is mathematically correct, since the term of the fofnthat appears in Eq. (178) does not appear
here. However, this expression in quite cumbersome, and its use will make the resulting formulas unappealing and
difficult to understand. Since the notation in Eq. (178) is much simpler, we will use it, bearing at all times in mind that
the true meaning of it is given by Eq. (179).

In this section the matrix that appears in the analysis of robots moving in 1D has been treated. However, it is clear
that the 2D case can be treated in the same manner, and that the matrix

1 )\it _ —>\it
5 Udiag (e)\e) u”

TR-2003-0002 58



that appears in the derivations, should be formally interpreted as

1 3 (M) _
'y l d1ag2N_T2 X Oen-2)x2) | yT (180)
0(2n —2)x2 RUBEP

G Relationship between continuous and discrete time position propagation
model

The discrete-time motion equations for a robot moving in 2D are

x(k+1) = x(k)+ V(k)dtcos(o(k))
y(k+1) = y(k)+ V(k)dtsin(p(k))

wherel/dt is the frequency at which odometry measurements are being processed. By linearizing these equations the
error propagation equations in discrete time are readily derived:

(2] = o V][ T ] [ Gremiltin Falbanin ] [ s

o X(k+1) = ®k)X(k)+ Galk)Wy(k)

The covariance matrix of the system noise5ig(k) Q. (k)G (k) whereQq is the covariance matrix of the discrete-
time velocity and orientation measurements,

T 0\2/ 0
Qa = E{Wa(k)W] (k)} = | “Je
d
and therefore

0, cos*(9(k)) + o2, VA (K) sin?(d(k) (0%, — 02 V2 (k) sin(d(k)) cos(B(R)) as1)
(0%, = 03, V2 (k) sin(d(k)) cos(d(k) o3, sin*(G(k) + 03, V2 (k) cos($(k))

The matrixGq(k)Qa(k)GE (k) represents the influx of uncertainty to the system over one sampling period, and there-
fore in order to create an equivalent continuous time system, the following must hold:

Ga(k)Qa (k)G (k)

/tt / t TV E{W.()W. ()}GE (r)drdt
/t t Ge(7) [ OOVC 5 } GT(r)dr

Pe

[ oot 60 + 03 VAW s (911) (ov — 03 V(1)) sin(@(t)) cos(d(1))
(72, = 02, V2 () sin(d(t)) cos(d(t)) 0%, sin(d(t)) + 03, V2 (1) cos?((1))

Whereav anda are the variances of the velocity measurements and orientation estimates of the equivalent contin-
uous time system respectively. By comparison of the last expression with the expression in Eq. (181), the expressions
for defining the variance of the noise in the equivalent continuous time system follow:

oy, = \/(gdvd, and Op. = \/&04)(1 (182)

H Matrix Inversion Lemma

If Aisn xn,Bisn xm,Cism x mandD ism x n then:

(A" + BO7'D)"' = A— AB(DAB +C)"'DA (183)
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| Matrix Monotonicity of My
In this appendix we show that the matrix
M = VTX(Iiyxon +h(CHX)'V
is matrix increasing in the argumekt, i.e.,
X' =X=M*=M
We note that ifX is invertible (which is the case of interest), then
M = VT (X7'+h(C))'V

And from the last relation it follows that

X - X=
Xt < X'
X'+ h(Cy) =2 XT'4+h(Cy) =
(X 4+ h(C,) T = (X HR(C) T =
VI (X 4+ h(C)) TV = V(X 4 R(C)) TV >
M = M
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