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Abstract

This Technical Report studies the accuracy of position estimation for groups of mobile robots performing Coop-
erative Localization (CL). We consider the case of teams comprising of possibly heterogeneous robots and provide
analytical expressions for upper bounds on the worst-case as well as the expected positioning uncertainty. These
bounds are determined as a function of the sensors’ noise covariance and the eigenvalues of the Relative Position
Measurement Graph (RPMG), i.e., the weighted directed graph which represents the network of robot-to-robot exte-
roceptive measurements. The RPMG is employed as a key element in this analysis and its properties are related to the
localization performance of the team. It is shown that for a robot group of certain size, the maximum expected rate of
uncertainty increase isindependentof the accuracy and number of relative position measurements and depends only
on the accuracy of the proprioceptive and orientation sensors on the robots. Additionally, the effect of changes in the
topology of the RPMG are studied and it is shown that at steady state, these reconfigurations donot inflict any loss in
localization precision. The theoretical results are validated by simulations.

1 Introduction

This Technical Report presents a theoretical analysis of the positioning uncertainty of a team of mobile robots per-
forming Cooperative Localization (CL). We consider a group ofN robots that employs an Extended Kalman Filter
(EKF) estimator to perform CL.Proprioceptivemeasurements (i.e., velocity) are integrated to propagate the state esti-
mates, whileexteroceptivemeasurements (i.e., robot-to-robot relative position measurements and potentially absolute
position measurements) are processed to update these estimates. In our formulation, we assume that an upper bound
on the variance of the robots’ orientation estimates can be a priori determined. This is the case, for example, when each
robot is equipped with a heading sensor of limited accuracy (e.g., a compass [1, 2] or a sun sensor [3, 4]) that directly
measures its orientation, or if the robots infer their orientation from measurements of the structure of the environment
in their surroundings [5, 6]. The ensuing analysis holds even if only a conservative upper bound on the orientation
uncertainty can be determined, e.g., by estimating the maximum orientation error, accumulated over a certain period
of time, due to the integration of the odometric measurements [7].

We should note here that the condition for bounded orientation uncertainty is satisfied in most cases in practice. If
instead, special care is not taken and the errors in the orientation estimates of the robots are allowed to grow unbounded,
any EKF-based estimator of their position will eventually diverge [8]. Thus, the requirement for bounded orientation
errors isnotan artificially imposed assumption; it is essentially aprerequisitefor performing EKF-based localization.
In fact, if we can determine the maximum tolerable value of the orientation variance, so that the linearization errors
are acceptably small, we can use this variance value in the derivations that follow.
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The availability of an upper bound on each robot’s orientation uncertainty enables us to decouple the task of posi-
tion estimation from that of orientation estimation, for the purpose of determining upper bounds on the performance
of CL. Specifically, we formulate a state vector comprising of only the positions of theN robots, and the orientation
estimates are used as inputs to the system, of which noise-corrupted observations are available. Clearly, the result-
ing EKF-based estimator is a suboptimal one, since the correlations that exist between the position and orientation
estimates of the robots are discarded. Thus, by deriving an upper bound on the covariance of the estimates produced
with this suboptimal, “position-only” estimator, we simultaneously determine an upper bound on the covariance of the
position estimates that would result from using a “full-state” EKF estimator.

Throughout this paper, we consider that all robots move constantly in a random fashion (i.e., no specific formation
is assumed [9]). At every time step, some (or all) robots record relative position measurements, and use this informa-
tion to improve the position estimates for all members of the group. During each EKF update cycle, all exteroceptive
measurements, as well as the current position estimates of the robots, must be available to the estimator [10]. There-
fore, it is assumed that a communication network exists enabling all robots to transmit such information. These can
then be fused either in a distributed scheme, or at a central fusion center.

A key element in this analysis is the Relative Position Measurement Graph (RPMG), which is defined as a graph
whose vertices represent robots in the group and its directed edges correspond to relative position measurements
(Fig. 8). That is, if roboti measures the relative position of robotj, the RPMG contains a directed edge from vertexi
to vertexj. In this work, we primarily consider the most challenging scenario where the absolute positions of the
robots cannot be measured or inferred. The case where global positioning information is available to at least one of
the robots in the group, is subsumed in our formulation and is treated as a special one.

2 Discrete-Time Analysis

In this section we present a discrete-time analysis of CL, and derive performance bounds that are applicable for the
covariance estimates output by the discrete-time EKF. For this analysis, we assume that both odometric and extero-
ceptive measurements are processed at the same rate. However, this not always the case, since odometric data are
commonly available at a higher rate. To address this problem, acontinuous-timeanalysis of the time evolution of the
covariance has also been conducted, and is presented in Section 3.

2.1 Propagation Model

We consider a team ofN non-holonomic robots,r1, r2, . . . , rN moving in a planar environment. The discrete-time
kinematic equations for thei-th robot are

xi(k + 1) = xi(k) + Vi(k)δt cos(φi(k)) (1)

yi(k + 1) = yi(k) + Vi(k)δt sin(φi(k)) (2)

whereVi(k) denotes the robot’s translational velocity at timek andδt is the sampling period. In the Kalman filter
framework, the estimates of the robot’s position are propagated using the measurements of the robot’s velocity,Vmi (k),
and the estimates of the robot’s orientation,φ̂i(k):

x̂ik+1|k = x̂ik|k + Vmi (k)δt cos(φ̂i(k))

ŷik+1|k = ŷik|k + Vmi (k)δt sin(φ̂i(k))

Clearly, these equations are time varying and nonlinear due to the dependence on the robot’s orientation. By linearizing
Eqs. (1) and (2), the error propagation equation for the robot’s position is readily derived:

[
x̃ik+1|k
ỹik+1|k

]
=

[
1 0
0 1

] [
x̃ik|k
ỹik|k

]
+

[
δt cos(φ̂i(k)) −Vmi (k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi (k)δt cos(φ̂i(k))

] [
wVi (k)

φ̃i(k)

]

⇔ X̃ik+1|k = I2×2 X̃ik|k + Gi(k) Wi(k) (3)
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where1 wVi
(k) is a zero-mean white Gaussian noise sequence of varianceσ2

Vi
, affecting the velocity measurements and

φ̃i(k) is the error in the robot’s orientation estimate at timek. This is modeled as a zero-mean white Gaussian noise
sequence of varianceσ2

φi
.

From Eq. (3), we deduce that the covariance matrix of the system noise affecting thei-th robot is:

Qi(k) = E{Gi(k)Wi(k)WT
i (k)GT

i (k)}
= Gi(k)E{Wi(k)WT

i (k)}GT
i (k)

=
[

δt cos(φ̂i(k)) −Vmi (k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi (k)δt cos(φ̂i(k))

] [
σ2

Vi
0

0 σ2
φi

] [
δt cos(φ̂i(k)) −Vmi (k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi (k)δt cos(φ̂i(k))

]T

=
[

cos(φ̂i(k)) − sin(φ̂i(k))
sin(φ̂i(k)) cos(φ̂i(k))

] [
δt2σ2

Vi
0

0 δt2V 2
mi

(k)σ2
φi

] [
cos(φ̂i(k)) −δt sin(φ̂i(k))
sin(φ̂i(k)) δt cos(φ̂i(k))

]T

= C(φ̂i(k))
[

δt2σ2
Vi

0
0 δt2V 2

m(k)σ2
φi

]
CT (φ̂i(k)) (4)

whereC(φ̂i) denotes the rotation matrix associated withφ̂i.
Using these results we can now write the error propagation equations for the entire system, comprising ofN robots:

X̃k+1|k = I2N×2N X̃k|k +




G1(k) 02×2 · · · 02×2

02×2 G2(k) · · · 02×2

.. .
02×2 GN (k)







wV1 (k)

φ̃1(k)

wV2 (k)

φ̃2(k)

...
wVN (k)

φ̃N (k)




⇔ X̃k+1|k = Φ(k)X̃k|k + Gt(k) W(k) (5)

where we have defined the state vector of the entire system as the stacked vector comprising of the positions of all the
robots:

X =




X1

X2

...
XN




The covariance matrix of the system noise is given by

Q(k) = E{Gt(k)W(k)WT
(k)GT

t (k)}

=




E{G1(k)W1(k)WT
1 (k)GT

1 (k)} · · · 02×2

...
. . .

...
02×2 · · · E{GN (k)WNkfdWT

N (k)GT
N (k)}




=




Q1(k) · · · 02×2

...
. ..

...
02×2 · · · QN (k)




= Diag(Qi(k)) (6)

Thus the equation for propagating the covariance matrix of the state error is written as

Pk+1|k = Pk|k + Q(k) (7)

wherePk+1|k = E{X̃k+1|kX̃T
k+1|k} andPk|k = E{X̃k|kX̃T

k|k} are the covariance of the error in the estimate of
X(k + 1) andX(k) respectively, after measurements up to timek have been processed.

1Throughout this document,0m×n denotes them × n matrix of zeros,1m×n denotes them × n matrix of ones,In×n denotes then × n
identity matrix, andDiag(·) denotes a block diagonal matrix.
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2.2 Exteroceptive Measurement Model

2.2.1 Relative Position Measurements

At every time step, the robots perform robot-to-robot relative position measurements. Assuming that robotri performs
Mi relative position measurements at each time step, we denote byNi ⊂ {r1, r2, · · · , rN} \ {ri} the subset of robots
and observed by roboti. We denote byTij the target of thej-th measurement performed by robotri, i.e.,

Tij ∈ Ni

where the indexj in assumes integer values in the range[1, Mi] to describe theMi relative position measurements of
robotri.

With this notation, the relative position measurement between robotsri andTij is given by:

zij(k + 1) = CT (φi(k + 1))
(
XTij (k + 1)−Xi(k + 1)

)
+ nzij (k + 1) (8)

By linearizing the last expression, the measurement error equation is obtained:

z̃ij(k + 1) = zij(k + 1)− ẑij(k + 1)

= CT (φ̂i(k + 1))
(
X̃Tij k+1|k − X̃i k+1|k

)
− CT (φ̂i(k + 1))J

(
X̂Tij k+1|k − X̂i k+1|k

)
φ̃i(k + 1) + nzij

(k + 1)

= CT (φ̂i(k + 1))

[
02×2 . . . −I2×2︸ ︷︷ ︸

ri

. . . I2×2︸︷︷︸
Tij

. . . 02×2

]




...
X̃i

...
X̃Tij

...




k+1|k

+
[

I2×2 −CT (φ̂i(k + 1))J∆̂pij k+1|k

] [
nzij (k + 1)

φ̃i(k + 1)

]

= Hij(k + 1)X̃k+1|k + Γij(k + 1)nij(k + 1) (9)

where

J =
[

0 −1
1 0

]
, ∆̂pijk+1|k = X̂Tij k+1|k − X̂ri k+1|k

and we note that the measurement matrix for this relative position measurement can be written as

Hij(k + 1) = CT (φ̂i(k + 1))

[
02×2 . . . −I2×2︸ ︷︷ ︸

ri

. . . I2×2︸︷︷︸
Tij

. . . 02×2

]
= CT (φ̂i(k + 1))Hoij (10)

At each time instant roboti recordsMi relative position measurements, described by the measurement matrixHi(k + 1),
i.e., a matrix whose block rows areHij(k + 1), j = 1 . . .Mi:

Hi(k + 1) =




CT (φ̂i(k + 1))Hoi1

CT (φ̂i(k + 1))Hoi2

...
CT (φ̂i(k + 1))HoiMi


 = ΞT

φ̂i
(k + 1)Hoi (11)

in the last expressionHoi is a constant matrix whose block rows areHoij , j = 1 . . . Mi, and

Ξφ̂i
(k + 1) = IMi×Mi ⊗ C(φ̂i(k + 1)) (12)

with ⊗ denoting the Kronecker matrix product. The covariance for the error of thej-th measurement of roboti is
given by

iRjj(k + 1) = Γij(k + 1)E{nij(k + 1)nT
ij(k + 1)}ΓT

ij(k + 1)

= Rzij (k + 1) + Rφ̃ij
(k + 1) (13)
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This expression encapsulates all sources of noise and uncertainty that contribute to the measurement errorz̃ij(k + 1).
More specifically,Rzij

(k + 1) is the covariance of the noisenij(k + 1) in the recorded relative position measurement
zij(k + 1) andRφ̃ij

(k + 1) is the additional covariance term due to the errorφ̃i(k + 1) in the orientation estimate of the
measuring robot. This is given by:

Rφ̃ij
(k + 1) = CT (φ̂i(k + 1))J∆̂pijk+1|kE{φ̃i

2}∆̂p
T

ijk+1|kJT C(φ̂i(k + 1))

= σ2
φi

CT (φ̂i(k + 1))J∆̂pijk+1|k∆̂p
T

ijk+1|kJT C(φ̂i(k + 1)) (14)

From this expression we conclude that the uncertaintyσ2
φi

in the orientation estimatêφi(k + 1) of the robot is amplified
by the distance between the two robots.

Each relative position measurement is comprised of the distanceρij and bearingθij to the target, expressed in the
measuring robot’s local coordinate frame, i.e.,

zij(k + 1) =
[

ρij(k + 1) cos θij(k + 1)

ρij(k + 1) sin θij(k + 1)

]
+ nzij

(k + 1)

By linearizing, the noise in this measurement can be expressed as:

nzij
(k + 1) '

[
cos θ̂ij −ρ̂ij sin θ̂ij

sin θ̂ij ρ̂ij cos θ̂ij

] [
nρij

(k + 1)

nθij
(k + 1)

]

wherenρij is the error in the range measurement,nθij is the error in the bearing measurement, assumed to be inde-
pendent white zero-mean Gaussian sequences, and

ρ̂2
ij = ∆̂p

T

ijk+1|k∆̂pijk+1|k

θ̂ij = Atan2(∆̂yijk+1|k , ∆̂xijk+1|k)− φ̂i(k + 1)

are the estimates of the range and bearing to robotrj , expressed with respect to the robot’s coordinate frame. At this
point we note that

C(φ̂i(k + 1))nzij (k + 1) =
[

cos φ̂i(k + 1) − sin φ̂i(k + 1)

sin φ̂i(k + 1) cos φ̂i(k + 1)

] [
cos θ̂ij −ρ̂ij sin θ̂ij

sin θ̂ij ρ̂ij cos θ̂ij

] [
nρij (k + 1)

nθij (k + 1)

]

=
[

cos(φ̂i(k + 1) + θ̂ij) −ρ̂ij sin(φ̂i(k + 1) + θ̂ij)
sin(φ̂i(k + 1) + θ̂ij) ρ̂ij cos(φ̂i(k + 1) + θ̂ij)

] [
nρij (k + 1)

nθij (k + 1)

]

=
[

1
ρ̂ij

∆̂pij J∆̂pij

] [
nρij (k + 1)

nθij (k + 1)

]

and therefore the quantityRzij (k + 1) can be written as:

Rzij (k + 1) = E{nzij (k + 1)nT
zij

(k + 1)}

= CT (φ̂i(k + 1))
[

1
ρ̂ij

∆̂pij J∆̂pij

]
E

{[
nρij

nθij

] [
nρij

nθij

]T
}[

1
ρ̂ij

∆̂pij J∆̂pij

]T

C(φ̂i(k + 1))

= CT (φ̂i(k + 1))
[

1
ρ̂ij

∆̂pij J∆̂pij

] [
σ2

ρi
0

0 σ2
θi

] [
1

ρ̂ij
∆̂pij J∆̂pij

]T

C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi

ρ̂2
ij

∆̂pij∆̂p
T

ij + σ2
θi

J∆̂pij∆̂p
T

ijJ
T

)
C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi

ρ̂2
ij

(
ρ̂2

ijI2×2 − J∆̂pij∆̂p
T

ijJ
T
)

+ σ2
θi

J∆̂pij∆̂p
T

ijJ
T

)
C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi
I2×2 +

(
σ2

θi
− σ2

ρi

ρ̂2
ij

)
J∆̂pij∆̂p

T

ijJ
T

)
C(φ̂i(k + 1)) (15)
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where the variance of the noise in the distance and bearing measurements is given by

σ2
ρi

= E{n2
ρi
} , σ2

θi
= E{n2

θi
}

respectively. Due to the existence of the error component attributed toφ̃i(k + 1), the exteroceptive measurements
that each robot performs at a given time instant are correlated. The matrix of correlation between the errors in the
measurementszij(k + 1) andzi`(k + 1) is

iRj`(k + 1) = Γij(t)E{nij(k + 1)nT
i`(k + 1)}ΓT

i`(t)

= σ2
φi

CT (φ̂i(k + 1))J∆̂pijk+1|k∆̂p
T

i`k+1|kJT C(φ̂i(k + 1)) (16)

The covariance matrix of all the measurements performed by roboti at the time instantk + 1 can now be computed.
This is a block matrix whosemn-th 2 × 2 submatrix element isiRmn, for m,n = 1 . . .Mi. Using the results of
Eqs. (14), (15), and (16), this matrix can be written as

Ri(k + 1) = ΞT
φ̂i

(k + 1)Roi
(k + 1)Ξφ̂i

(k + 1) (17)

where

Roi (k + 1) =

2666664
σ2

ρi
I2×2 +

�
σ2

φi
+ σ2

θi
− σ2

ρi

ρ̂2
i1

�
Jc∆pi1

c∆p
T

i1J
T . . . σ2

φi
Jc∆pi1

c∆p
T

iMi
JT

...
. . .

...

σ2
φi

Jc∆piMi
c∆p

T

i1J
T . . . σ2

ρi
I2×2 +

�
σ2

φi
+ σ2

θi
− σ2

ρi

ρ̂2
iMi

�
Jc∆piMi

c∆p
T

iMi
JT

3777775
= σ2

ρi
I2Mi×2Mi + Di(k + 1)

 
σ2

θi
IMi×Mi + σ2

φi
1Mi×Mi − diag

 
σ2

ρij

ρ̂2
i

!!
DT

i (k + 1)

= σ2
ρi

I2Mi×2Mi −Di(k + 1) diag

 
σ2

ρij

ρ̂2
i

!
DT

i (k + 1)| {z }
R1(k + 1)

+ σ2
θi

Di(k + 1)DT
i (k + 1)| {z }

R2(k + 1)

+ σ2
φi

Di(k + 1)1Mi×MiD
T
i (k + 1)| {z }

R3(k + 1)

(18)

where

Di(k + 1) =




J∆̂pi1k+1|k . . . 02×1

...
.. .

...
02×1 . . . J∆̂piMik+1|k


 = Diag

(
J∆̂pijk+1|k

)

is a2M1 ×Mi block diagonal matrix, depending on the estimated positions of the robots. In Eq. (18) the covariance
termR1(k + 1) is the covariance of the error due to the noise in the range measurements,R2(k + 1) is the covariance
term due to the error in the bearing measurements, andR3(k + 1) is the covariance term due to the error in the orienta-
tion estimates of the robot. The measurement matrixH(k + 1) describing the measurements that are performed by all
the robots of the team at time stepk + 1 is a matrix with block rowsHi(k + 1), i = 1 . . . M , i.e.,

H(k + 1) =




ΞT
φ̂1

(k + 1)Ho1

ΞT
φ̂2

(k + 1)Ho2

...
ΞT

φ̂M
(k + 1)HoN




= Diag
(
ΞT

φ̂i
(k + 1)

)



Ho1

Ho2

...
HoM


 = ΞT

(k + 1)Ho (19)

where

Ξ(k + 1) = Diag
(
Ξφ̂i

(k + 1)

)
(20)

is a block diagonal matrix with block elementsΞφ̂i
(k + 1), for i = 1 . . .M , andHo is a matrix with block rowsHoi ,

i = 1 . . . M . Since the measurements performed by different robots are independent, the measurement covariance
matrix for the entire system is given by

R(k + 1) = Diag (Ri(k + 1)) = Diag
(
ΞT

φ̂i
Roi (k + 1)Ξφ̂i

)
= ΞT

(k + 1)Ro(k + 1)Ξ(k + 1) (21)

whereRo is a block diagonal matrix with block elementsRoi , i = 1 . . . N .
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2.2.2 Absolute Position Measurements

If, in addition to relative position measurements, any of the robots, e.g., robot`, has access to absolute positioning
information, such as GPS measurements or from a map of the area, the corresponding submatrix element ofH(k + 1)

is:

Ha`
=

[
02×2 . . . I2×2︸︷︷︸

`

. . . 02×2

]
(22)

while Ra`
, the covariance of the absolute position measurement, is a constant provided by the specifications of the

absolute positioning sensor.
To account for the absolute position measurements, the matrixHo in Eq. (19) is augmented by simply appending

the appropriate block rowsHa`
, while Ro is augmented by appending the matricesRa`

on the diagonal, yielding

Ro(k + 1) =
[

Diag (Roi
(k + 1)) 0

0 Diag (Ra`
)

]
(23)

Additionally, in this case, the matrixΞT
(k + 1) is also augmented as follows:

Ξ(k + 1) =

[
Diag

(
Ξφ̂i

(k + 1)

)
0

0 I2Ma×2Ma

]
(24)

where we have assumed thatMa absolute position measurements are available to the robots of the team.

2.2.3 Covariance update equation

We now write the covariance update equation, which is

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
(k + 1)

(
H(k + 1)Pk+1|kHT

(k + 1) + R(k + 1)
)−1

H(k + 1)Pk+1|k
= Pk+1|k

−Pk+1|kHT
o Ξ(k + 1)

(
ΞT

(k + 1)HoPk+1|kHT
o Ξ(k + 1) + ΞT

(k + 1)Ro(k + 1)Ξ(k + 1)

)−1

ΞT
(k + 1)HoPk+1|k

= Pk+1|k −Pk+1|kHT
o

(
HoPk+1|kHT

o + Ro(k + 1)
)−1

HoPk+1|k (25)

In order to derive the last expression, propertyΞT
(k + 1) = Ξ−1

(k + 1) was employed. This property is a consequence
of the definition of matrixΞ(k + 1) (cf. Eqs. (12) and (20) or (24)), and the fact that rotation matrices satisfyCT (φ̂i) =
C−1(φ̂i).

2.3 The Riccati Recursion

The metric we employ in order to characterize the positioning performance of CL is the covariance matrix of the robots’
position estimates. By combining Eqs. (7) and (25) we derive the discrete-time Riccati recursion, that describes the
time evolution of the covariance matrix:

Pk+2|k+1 = Pk+1|k −Pk+1|kHT
o

(
HoPk+1|kHT

o + Ro(k + 1)
)−1

HoPk+1|k + Q(k + 1)

This recursion provides the value of the covariance matrix at each time step, right after the propagation phase of the
EKF. To simplify the notation, we setPk = Pk+1|k andPk+1 = Pk+2|k+1, and therefore we can write

Pk+1 = Pk −PkHT
o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk + Q(k + 1) (26)

We note that the matricesQ(k + 1) andRo(k + 1) in this Riccati recursion are time varying, and this does not allow
the derivation of any closed form expressions for the time evolution ofPk, in the general case. We therefore have to
resort to derivingboundsfor the covariance of the CL position estimates. The following two lemmas are the basis of
our analysis:
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Lemma 2.1 If Ru andQu are matrices such thatRu º Ro(k) andQu º Q(k) for all k ≥ 0, then the solution to
the Riccati recursion

Pu
k+1 = Pu

k −Pu
kH

T
o

(
HoPu

kH
T
o + Ru

)−1
HoPu

k + Qu (27)

with the initial conditionPu
0 = P0, satisfiesPu

k º Pk for all k ≥ 0.

Lemma 2.2 If R̄ andQ̄ are matrices such that̄R = E{Ro(k)} andQ̄ = {Q(k)} for all k ≥ 0, then the solution to
the Riccati recursion

P̄k+1 = P̄k − P̄kHT
o

(
HoP̄kHT

o + R̄
)−1

HoP̄k + Q̄ (28)

with the initial conditionP̄0 = P0, satisfies̄Pk º E{Pk} for all k ≥ 0.

Essentially, Lemma 2.1 maintains that in order to derive an upper bound on theworst-casecovariance matrix of the
position estimates in CL, it suffices to deriveupper boundsfor the covariance matrices of the system and measurement
noise, and to solve aconstant coefficientRiccati recursion. Similarly, Lemma 2.2 states that an upper bound on the
expectedpositioning uncertainty of CL is determined as the solution of a constant coefficient Riccati recursion, where
the covariance matrices of the system and measurement noise have been replaced by their respectiveaveragevalues.
The proofs for these lemmas are given in Appendices A and B respectively. In the remainder of this section, we derive
appropriate upper bounds, as well as the average values of the matricesQ(k) andRo(k) respectively.

• Derivation of upper bounds for Q(t) and Ro(t)

In order to derive an upper bound for the covariance matrixQ(k) we recall thatQ(k) = Diag(Qi(k)), where

Qi(k) = C(φ̂i(k))
[

δt2σ2
Vi

0
0 δt2V 2

mi
(k)σ2

φi

]
CT (φ̂i(k))

From the properties of rotation matrices it is known thatC−1(φ̂i(k)) = CT (φ̂i(k)), and thusQi(k) is related by a
similarity transformation to the matrix [

δt2σ2
Vi

0
0 δt2V 2

mi
(k)σ2

φi

]

which implies that the eigenvalues ofQi(k) areδt2σ2
Vi

andδt2V 2
mi

(k)σ2
φi

. We assume that the velocity of each robot
is approximately constant, and equal toVi, and denote

qi = max
(
δt2σ2

Vi
, δt2V 2

mi
(k)σ2

φi

) ' max
(
δt2σ2

Vi
, δt2V 2

i σ2
φi

)
(29)

This definition states thatqi is the largest eigenvalue ofQi(k), and therefore

Qi(k) ¹ qiI2×2 ⇒ Q(k) ¹ Diag(qiI2×2) = Qu (30)

An upper bound onRo(k) is obtained by considering each if its block diagonal elements,Roi (k). Referring to
Eq. (18), we examine the termsR1(k) , R2(k) andR3(k) separately: the term expressing the effect of the noise in the
range measurements is

R1(k) = σ2
ρi

I2Mi×2Mi −Di(k) diag

(
σ2

ρi

ρ̂2
ij

)
DT

i (k) ¹ σ2
ρi

I2Mi×2Mi (31)

The last matrix inequality follows from the fact that the term being subtracted fromσ2
ρi

I2Mi×2Mi is a positive semi-
definite matrix. The covariance term due to the noise in the bearing measurement is

R2(k) = σ2
θi

Di(k)DT
i (k)

= σ2
θi
Diag

(
ρ̂2

ij

[
sin2(θ̂ij) sin(θ̂ij) cos(θ̂ij)

sin(θ̂ij) cos(θ̂ij) cos2(θ̂ij)

])

¹ σ2
θi
Diag

(
ρ̂2

ijI2×2

)

¹ σ2
θi

ρ2
oI2Mi×2Mi (32)
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whereρo is the maximum range at which a measurement can occur, determined either by the characteristics of the ro-
bots’ sensors or by the properties of the area in which the robots move. Finally, the covariance term due to the error in
the orientation of the measuring robot isR3(k) = σ2

φi
Di(k)1Mi×MiD

T
i (k). Calculation of the eigenvalues of the ma-

trices1Mi×Mi
andIMi×Mi

verifies that1Mi×Mi
¹ MiIMi×Mi

, and thus we can writeR3(k) ¹ Miσ
2
φi

Di(k)DT
i (k).

By derivations analogous to those employed to yield an upper bound forR2(k), we can show that

R3(k) ¹ Miσ
2
φi

ρ2
oI2Mi×2Mi

By combining this result with those of Eqs. (31), (32), we can writeRoi
(k) = R1(k) + R2(k) + R3(k) ¹ Ru

i , where

Ru
i =

(
σ2

ρi
+ Miσ

2
φi

ρ2
o + σ2

θi
ρ2

o

)
I2Mi×2Mi

= riI2Mi×2Mi
(33)

with
ri = σ2

ρi
+ Miσ

2
φi

ρ2
o + σ2

θi
ρ2

o (34)

Thus, we can write

Ro(k) = Diag(Roi
(k)) ¹ Diag(riIMi×Mi

) = Ru (35)

• Derivation of the Expected Values ofQ(k) and Ro(k)

In order to derive the average value ofQ(k) we note that

Qi(k) = C(φ̂i(k))
[

δt2σ2
Vi

0
0 δt2V 2

mi
(k)σ2

φi

]
CT (φ̂i(k))

= δt2


 σ2

Vi
cos2(φ̂i) + V 2

mi
(k)σ2

φi
sin2(φ̂i)

(
σ2

Vi
− V 2

mi
(k)σ2

φi

)
sin(φ̂i) cos(φ̂i)(

σ2
Vi
− V 2

mi
(k)σ2

φi

)
sin(φ̂i) cos(φ̂i) σ2

Vi
sin2(φ̂i) + V 2

mi
(k)σ2

φi
cos2(φ̂i)




and therefore, by averaging over all values of orientation, the expected value ofQi(k) is derived:

E{Qi(k)} = δt2
σ2

V + V 2
i σ2

φi

2
I2×2 = q̄iI2×2

where

q̄i = δt2
σ2

V + V 2
i σ2

φi

2
Thus,

E{Q(k)} = Diag (E{Qi(k)}) = Diag(q̄iI2×2) = Q̄ (36)

The average value ofRo(k) is derived by employing the property

E{Ro(k)} = E{Diag(Roi (k))} = Diag(E{Roi (k)}) (37)

We therefore see that the average values of the matricesRoi (k), i = 1 . . . N need to be determined. From Eq. (18) we
note that evaluation of the average value ofRoi (k) requires the computation of the expected values of the following
terms:

T1 =
∆̂pij∆̂p

T

ij

ρ̂2
ij

, T2 = ∆̂pij∆̂p
T

ij , and T3 = ∆̂pij∆̂p
T

i` (38)

for j, ` = 1 . . .Mi. The average value ofT1 is easily derived by employing the polar coordinate description of the
vector∆̂pij in terms ofρ̂ij andθ̂ij , which yields

T1 =
∆̂pij∆̂p

T

ij

ρ̂2
ij

=
1

ρ̂2
ij

[
ρ̂2

ij cos2(θ̂ij) ρ̂2
ij sin(θ̂ij) cos(θ̂ij)

ρ̂2
ij sin(θ̂ij) cos(θ̂ij) ρ̂2

ij sin2(θ̂ij)

]

=
[

cos2(θ̂ij) sin(θ̂ij) cos(θ̂ij)
sin(θ̂ij) cos(θ̂ij) sin2(θ̂ij)

]
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From the last expression we conclude that for any probability density function that guarantees a uniform distribution
for the bearing angle of the measurements (i.e., any symmetric probability density function), the average value of the
termT1 is

E{T1} =
1
2
I2×2

In order to compute the expected value of the termsT2 andT3, we assume that the robots are located in a square arena
of sideα, and that their positions are described by uniformly distributed random variables in the interval[−α/2, α/2].
We can thus write

E{T2} = E{∆̂pij∆̂p
T

ij} = E

{[
∆̂x

2

ij ∆̂xij∆̂yij

∆̂yij∆̂xij ∆̂y
2

ij

]}

=
[

E{x2
j − 2xixj + x2

i } E{xjyj − xjyi − xiyj + xiyi}
E{yjxj − yjxi − yixj + yixi} E{y2

j − 2yjyi + y2
i }

]

=
[

2E{x2
i } 0

0 2E{y2
i }

]

=

[
α2

6 0
0 α2

6

]

=
α

12
I2×2

and similarly,

E{T3} = E{∆̂pij∆̂p
T

i`} = E

{ [
∆̂xij∆̂xi` ∆̂xij∆̂yi`

∆̂yij∆̂xi` ∆̂yij∆̂yi`

]}

=
[

E{xjx` − xix` − xjxi + x2
i } E{xjy` − xjyi − xiy` + xiyi}

E{yjx` − yjxi − yix` + yixi} E{yjy` − yiy` − yjyi + y2
i }

]

=
[

E{x2
i } 0

0 E{y2
i }

]

=

[
α2

12 0
0 α2

12

]

=
α

12
I2×2

These results enable us to obtain the average value of the matricesRoi (k), i = 1 . . . N . Employing the linearity of the
expectation operator we obtain

R̄i = E{Roi (k)}

=




(
1
2σ2

ρi
+ 1

6σ2
φi

+ 1
6σ2

θi

)
I2×2 . . . 1

12σ2
φi

I2×2

...
. ..

...
1
12σ2

φi
I2×2 . . .

(
1
2σ2

ρi
+ 1

6σ2
φi

+ 1
6σ2

θi

)
I2×2




=
(

1
2
σ2

ρi
+

1
12

σ2
φi

+
1
6
σ2

θi

)
I2Mi×2Mi +

1
12

σ2
φi

(1Mi×Mi ⊗ I2×2)

The average value ofRo(k) is therefore

R̄ = E{Ro(k)} = Diag(R̄i) (39)

2.4 Evaluation of the Upper Bounds at Steady State

Lemmas 2.1 and 2.2 allow the evaluation of upper bounds on the worst case uncertainty and on the average uncertainty
of the position estimates in CL, atany time instant after the deployment of the robot team. This can be achieved, for
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example, by numerical evaluation of the solution to the recursions in Eqs. (27) and (28) respectively. For many
applications, it is of interest however, to study the steady-state behavior of the positioning uncertainty in CL. For this
reason, we now derive the steady-state values of the solutions to the recursions (27) and (28). By ”steady-state values”
we refer to the values of the covariance matrix after a sufficient time has elapsed, enough for the the initial transient
phenomena in the solutions to subside. The steady state solutions are derived by evaluating the limit ofPu

k andP̄k as
k →∞.

We note at this point that the Riccati recursions of Eqs. (27) and (28) essentially describe the time evolution of
the covariance of the position estimates in two hypothetical CL scenarios, where the system model is a Linear Time
Invariant (LTI) one. Therefore, the problem of computing the upper bounds on the steady state positioning uncertainty
in CL reduces to the problem ofdetermining the steady state covariance matrix for a LTI CL system model.

To avoid redundant derivations, in the following we will solve for the steady state solution of the following Riccati
recursion:

Ps
k+1 = Ps

k −Ps
kH

′T
o

(
H′

oP
s
kH

′T
o + Rs

)−1
H′

oP
s
k + Qs (40)

After deriving the steady state solution of this recursion, we employ the substitutions

Rs → Ru, Qs → Qu

and
Rs → R̄ , Qs → Q̄

in order to obtain the steady state solutions of the Riccati recursions of Lemmas (2.1) and (2.2) respectively.
We first note that the Riccati recursion in Eq. (40) can be reformulated as follows, by use of the matrix inversion

lemma (cf. Appendix H):

Ps
k+1 = Ps

k −Ps
kH

T
o

(
HoPs

kH
T
o + Rs

)−1
HoPs

k + Qs

= Ps
k

(
I2N×2N + HT

o R−1
s HoPs

k

)−1
+ Qs (41)

The derivations are simplified by defining thenormalizedcovariance matrix as

Pnk
= Q−1/2

s Ps
kQ

−1/2
s (42)

Pre- and post-multiplying Eq. (41) byQ−1/2
s , and simple algebraic manipulation yields

Pnk+1 = Pnk
(I2N×2N + CsPnk

)−1 + I2N×2N (43)

where
Cs = Q1/2

s HT
o R−1

s HoQ1/2
s

Note that the only parameter in the Riccati recursion (43) is the matrixCs, which contains the main parameters that
characterize the localization performance of the robotic team. The eigenvalues of this matrix, which are studied in
Appendix E, are in close relation with the type and number of exteroceptive measurements recorded by the robots
of the team, and determine the properties of the upper bound on the steady-state positioning uncertainty. To further
simplify the derivations, we denote the Singular Value Decomposition (SVD) ofCs as

Cs = Us diag(λi)UT
s = UsΛUT

s

and substituting in Eq. (43) we obtain2

Pnk+1 = Pnk

(
I + UsΛUT

s Pnk

)−1
+ I ⇒

UT
s Pnk+1Us = UT

s Pnk
UsUT

s

(
I + UsΛUT

s Pnk

)−1
Us + I ⇒

UT
s Pnk+1Us = UT

s Pnk
Us

(
I + ΛUT

s Pnk
Us

)−1
+ I

2To make the notation less cumbersome, we hereafter omit the dimension index from the identity matrices, whenever their dimension is equal
to the dimension of the state covariance matrix. I.e., from this point on,I = I2N×2N .
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We define

Pnnk
= UT

s Pnk
Us (44)

and we obtain the recursion

Pnnk+1 = Pnnk+1

(
I + ΛPnnk+1

)−1 + I (45)

This form of the recursion is simpler, since now the only parameter is the diagonal matrix of the eigenvalues ofCs.
We hereafter present the derivation of the steady-state solution forPnnk+1 , based on the availability of absolute

positioning information:

2.4.1 Observable system

We first study the case in which at least one of the robots has access to absolute position measurements. In this case
the system is observable [10], and therefore the covariance of the robot’s position estimates remains bounded at steady
state. For this case, it is shown in Appendix E thatrank(Cs) = 2N , and therefore all the singular values ofCs are
positive.

Since we are dealing with an observable system, the solution to Eq. (45) will converge to a constant value at steady
state, determined by solving the Discrete Algebraic Riccati Equation (DARE):

Pnnss = Pnnss (I + ΛPnnss)
−1 + I

Since the system is both controllable and observable, the solution of the above DARE is unique [11]. Therefore, we
can ”guess” a solution, and if it satisfies the DARE, we can be assured that this is the only possible solution. We now
assume a diagonal form forPnnss . In that case, all the matrices in the above DARE are diagonal, and thus we obtain
the following set of2N independent equations:

Pnnss(i, i) =
Pnnss(i, i)

1 + λiPnnss(i, i)
+ 1, i = 1 . . . 2N (46)

Whose solution is given by

Pnnss(i, i) =
1
2

+
√

1
4

+
1
λi

By substitution of this result in Eqs. (44) and (42), we obtain the steady state solution to the Riccati recursion (40):

Ps
ss = Q1/2

s Us diag
(

1
2

+
√

1
4

+
1
λi

)
UT

s Q1/2
s (47)

Finally, from this result, by setting
Rs → Ru, Qs → Qu

and
Rs → R̄ , Qs → Q̄

we can derive the following lemmas:

Lemma 2.3 The steady state covariance of the position estimates for a team of robots performing CL, when at least
one robot has access to absolute positioning information is bounded above by the matrix

Pu
ss = Q1/2

u Uu diag

(
1
2

+

√
1
4

+
1

λui

)
UT

u Q1/2
u (48)

where we have denoted the singular value decomposition ofCu = Q1/2
u HT

o R−1
u HoQ

1/2
u as Cu = Uu diag(λui)U

T
u .
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Lemma 2.4 The expected steady state covariance of the position estimates for a team of robots performing CL, when
at least one robot has access to absolute positioning information is bounded above by the matrix

P̄ss = Q̄1/2Ūdiag
(

1
2

+
√

1
4

+
1
λ̄i

)
ŪT Q̄1/2 (49)

where we have denoted the singular value decomposition ofC̄ = Q̄1/2HT
o R̄−1HoQ̄1/2 as C̄ = Ūdiag(λ̄i)ŪT .

At this point we should note that the upper bounds on the steady-state uncertainty depend on the topology of the
RPMG and the accuracy of the proprioceptive and exteroceptive sensors of the robots. However, the steady-state uncer-
tainty is independent of the initial covariance of the robots, which comes as no surprise, since the system is observable.

2.4.2 Unobservable System

If none of the robots has access to absolute position measurements, the system is unobservable from a Control The-
oretic point of view. In Appendix E it is shown that in this caserank(Cs) = 2N − 2, which implies thatCs has
two singular values equal to zero. This fact somewhat complicates the derivations, as now the steady-state solution to
Eq. (45) depends on the initial uncertainty of the robots’ position estimates.

We first consider the situation in which the initial covariance matrix is equal to zero, i.e.P0 = 02N×2N . We
denote the solution to Eq. (45) byP(0)

nnk in this case, and it is easy to see thatP(0)
nn0 = 02N×2N . As a result, fork = 0

the right-hand side of Eq. (45) is a diagonal matrix. By a simple induction argument, we can show that the solution
to this recursion with zero initial condition retains a diagonal form for allk ≥ 0. Addressing each of the diagonal
elements individually, we observe that for the first2N − 2 elements, which correspond to the nonzero singular values,
we obtain the recursions

P(0)
nnk+1

(i, i) = P(0)
nnk

(i, i)
(
1 + λiP(0)

nnk
(i, i)

)−1

+ 1, i = 1 . . . 2N − 2 (50)

while for the last two diagonal elements we obtain

P(0)
nnk+1

(i, i) = P(0)
nnk

(i, i) + 1, i = 2N − 1, 2N

The steady-state solution for the first2N − 2 elements is derived by solving2N − 2 independent scalar equations of
the form

P(0)
nnss

(i, i) =
P(0)

nnss(i, i)

1 + λiP
(0)
nnss(i, i)

+ 1, i = 1 . . . 2N (51)

which have the same structure as in Eq. (46) (the eigenvaluesλi will, in general, be different). Therefore the asymptotic
solution forPnnk

is given by

P(0)
nnss

(k) =

[
diag2N−2

(
1
2 +

√
1
4 + 1

λi

)
0(2N−2)×2

02×(2N−2) kI2×2

]
(52)

From the last expression we see that when the initial value forPnnk
is equal to zero, at steady state the rate of increase

of the matrixPnnk
is given by

D = P(0)
nnss

(k + 1)−P(0)
nnss

(k) =
[

0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) I2×2

]

Since Eq. (45) describes the time evolution of the covariance in a LTI system, we do not expect therateof increase at
steady state to depend on the initial conditions. With this in mind, we will now introduce a change of variables, that
will facilitate the derivation of the steady state solution of Eq. (45) for arbitrary initial conditions. We set

Pnnk
= P̃k + kD (53)
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and substitution in Eq. (45) yields

P̃k+1 + (k + 1)D =
(
P̃k + kD

)(
I + Λ

(
P̃k + kD

))−1

+ I ⇒

P̃k+1 + (k + 1)D =
(
P̃k + kD

)(
I + ΛP̃k + kΛD

)−1

+ I ⇒

P̃k+1 + (k + 1)D =
(
P̃k + kD

)(
I + ΛP̃k

)−1

+ I ⇒

P̃k + (k + 1)D = P̃k

(
I + ΛP̃k

)−1

+ kD
(
I + ΛP̃k

)−1

+ I

Where we have used the fact that since the 2 smallest eigenvalues ofCs equal zero, we haveΛD = 02N×2N . By
application of the matrix inversion lemma in the second term of the last expression we obtain

P̃k + (k + 1)D = P̃k

(
I + ΛP̃k

)−1

+ kD
(

I − Λ
(
I + P̃kΛ

)−1

P̃k

)
+ I ⇒

P̃k+1 + (k + 1)D = P̃k

(
I + ΛP̃k

)−1

+ kD + I

where the resultΛD = 02N×2N has been employed once more. Finally, from the last expression we obtain

P̃k+1 = P̃k

(
I + ΛP̃k

)−1

+ I −D ⇒

P̃k+1 = P̃k

(
I + ΛP̃k

)−1

+ D′ (54)

where

D′ = I −D =
[
I(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) 02×2

]

Our objective now is to determine the steady-state solution of the Riccati recursion (54), for any initial covariance
matrix P̃0. For this purpose we employ the following result, which is proven in [11] (Section 8.6, Lemmas 8.6.2 and
8.6.3):

Lemma 2.5 SupposeP (0)
k is the solution to the discrete-time Riccati recursion

Pk+1 = FPkFT + GQGT − (FPkHT + GS)(HPkHT + R)−1(FPkHT + GS)T , (55)

with initial valueP0 = 0. Then the solution to the Riccati recursion with the same{F, G,H} and{Q,R, S}matrices,
but with an arbitrary initial conditionΠ0 is defined by the identity

Pk+1 − P
(0)
k+1 = Φ(0)

p (k + 1, 0)
(
I + Π0O(0)

k

)−1

Π0Φ(0)
p (k + 1, 0)T

whereΦ(0)
p (k + 1, 0) is given by

Φ(0)
p (k + 1, 0) = (F −KpH)k+1 (I + PJk+1)

and
O(0)

k = Jk+1

In these expressionsP is any solution to the Discrete Algebraic Riccati Equation (DARE)

P = FPFT + GQGT − (FPHT + GS)(HPHT + R)−1(FPHT + GS)T ,

Kp =
(
FPHT + GS

) (
R + HPHT

)−1
andJk denotes the solution to thedualRiccati recursion with zero initial

condition, which, in the caseS = 0, is written as

Jk+1 = FJkFT + HT R−1H − FT JkG(Q−1 + GT JkG)−1JkF, J0 = 0
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To apply this lemma, we first reformulate Eq. (54) as follows:

P̃k+1 = P̃k

(
I + ΛP̃k

)−1

+ D′ ⇒

P̃k+1 = P̃k

(
I +

√
Λ

(√
ΛP̃k

))−1

+ D′ ⇒

P̃k+1 = P̃k

(
I +

√
Λ

(
I +

√
ΛP̃k

√
Λ

)−1√
ΛP̃k

)
+ D′ ⇒

P̃k+1 = P̃k + P̃k

√
Λ

(
I +

√
ΛP̃k

√
Λ

)−1√
ΛP̃k + D′

where
√

Λ = diag
(√

λi

)
. Introducing the substitutions

Pk ↔ P̃k, G ↔ G =
[
I(2N−2)×(2N−2)

02×(2N−2)

]
, Q ↔ I(2N−2)×(2N−2), H ↔

√
Λ, R ↔ I, S ↔ 02×(2N+2)

allows us to specialize Lemma 2.5 to our problem as follows:

Lemma 2.6 SupposẽP(0)
k is the solution to the Riccati recursion

P̃k+1 = P̃k

(
I + ΛP̃k

)−1

+ D′ (56)

= P̃k + P̃k

√
Λ

(
I +

√
ΛP̃k

√
Λ

)−1√
ΛP̃k + D′ (57)

with zero initial condition. Then the solution to this recursion when the initial covariance matrix is an arbitrary
positive semidefinite matrix̃P0, is defined by the relation

P̃k+1 − P̃(0)
k+1 = Φ(0)

p (k + 1, 0)
(
I + P̃0Jk+1

)−1

P̃0Φ(0)
p (k + 1, 0)T (58)

where

Φ(0)
p (k + 1, 0) =

(
I −P

√
Λ

(
I +

√
ΛP

√
Λ

)−1√
Λ

)k+1

(I + PJk+1) (59)

In these expressionsP is any solution to the Discrete Algebraic Riccati Equation (DARE)

P = P−P
√

Λ
(
I +

√
ΛP

√
Λ

)−1√
ΛP + D′ (60)

andJk denotes the solution to thedualRiccati recursion with zero initial condition:

Jk+1 = Jk + Λ− JkG
(
I(2N−2)×(2N−2) + GT JkG

)−1
GT Jk, J0 = 02N×2N (61)

We now apply this lemma to derive the steady-state value ofP̃k, when the initial covariance or the robots’ position
estimates is an arbitrary positive semidefinite matrixP0, in which case we have

P̃0 = Pnn0 − 0 ·D = UT
s Pn0Us = UT

s Q−1/2
s P0Q−1/2

s Us (62)

In the following, we seek to derive the steady-state solution ofP̃k, and therefore we will evaluate the results of
Lemma 2.6 after sufficient time, i.e., ask →∞. We first note that the steady-state solution to the recursion in Eq. (57)
with zero initial condition can be directly derived by the definition ofP̃k in Eq. (53):

P̃(0)
ss (k) = P(0)

nnss
(k)− kD

=

[
diag2N−2

(
1
2 +

√
1
4 + 1

λi

)
0(2N−2)×2

02×(2N−2) kI2×2

]
− kD

=

[
diag2N−2

(
1
2 +

√
1
4 + 1

λi

)
0(2N−2)×2

02×(2N−2) 02×2

]
(63)
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Substitution ofP̃(0)
ss for P in Eq. (60) verifies that̃P(0)

ss is a solution of the DARE, and therefore we have

Φ(0)
p (k + 1, 0) =

(
I − P̃(0)

ss

√
Λ

(
I +

√
ΛP̃(0)

ss

√
Λ

)−1√
Λ

)k+1 (
I + P̃(0)

ss Jk+1

)

=
(
I + P̃(0)

ss Λ
)−(k+1) (

I + P̃(0)
ss Jk+1

)

=

[
diag2N−2

(
1 + λi

2 + λi

√
1
4 + 1

λi

)
0(2N−2)×2

02×(2N−2) I2×2

]−(k+1) (
I + P̃(0)

ss Jk+1

)
(64)

where we have applied the matrix inversion lemma to simplify the expression.
The next step is to derive the solution of the dual Riccati recursion (61) ask → ∞. Note that since the initial

condition of this recursion is zero, atk = 0 the right hand side of Eq. (61) is a diagonal matrix. By induction, it is
simple to show thatJk will retain its diagonal structure for allk ≥ 0, and therefore the solution to the recursion is
obtained by solving a set of independent scalar recursions, for the diagonal elementsJk(i, i), i = 1 . . . 2N . These
recursions are given by

Jk+1(i, i) = Jk(i, i) + λi − Jk(i, i)2

1 + Jk(i, i)
, i = 1 . . . 2N − 2 (65)

while the elementsJk(2N − 1, 2N − 1) andJk(2N, 2N) remain equal to zero for all time. By evaluating the steady
state solution of these recursions (i.e., by requiring thatJk+1(i, i) = Jk(i, i), and solving the resulting equations) we
obtain the following solution forJk at steady state:

Jss =


diag2N−2

(
λi

2 +
√

λ2
i

4 + λi

)
0(2N−2)×2

02×(2N−2) 02×2


 (66)

We can now compute the steady-state value of the quantityΦ(0)
p (k + 1, 0). From Eq. (64) we obtain

lim
k→∞

Φ(0)
p (k + 1, 0) = lim

k→∞

[
diag2N−2

(
1 + λi

2 + λi

√
1
4 + 1

λi

)
0(2N−2)×2

02×(2N−2) I2×2

]−(k+1) (
I + P̃(0)

ss Jk+1

)

=

[
limk→∞ diag2N−2

(
1 + λi

2 + λi

√
1
4 + 1

λi

)−(k+1)

0(2N−2)×2

02×(2N−2) I2×2

] (
I + P̃(0)

ss Jss

)

=
[

0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) I2×2

] (
I + P̃(0)

ss Jss

)

Where we have used the fact that

(
1 +

λi

2
+ λi

√
1
4

+
1
λi

)
> 1 ⇒ lim

k→∞

(
1 +

λi

2
+ λi

√
1
4

+
1
λi

)−(k+1)

= 0

Furthermore, substitution for̃P(0)
ss andJss from Eqs. (63) and (66), yields

lim
k→∞

Φ(0)
p (k + 1, 0) =

[
0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) I2×2

]
= D

Using this result, Eq. (58) yields

lim
k→∞

(
P̃k+1 − P̃(0)

k+1

)
= lim

k→∞

(
Φ(0)

p (k + 1, 0)
(
I + P̃0Jk+1

)−1

P̃0Φ(0)
p (k + 1, 0)T

)

= D
(
I + P̃0Jss

)−1

P̃0DT
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and therefore

P̃ss = lim
k→∞

P̃k+1 = P̃(0)
ss + D

(
I + P̃0Jss

)−1

P̃0DT

This result allows us to evaluate the steady-state solution of Eq. (41), for the case when none of the robots has access
to absolute position information. Using Eq. (53), we obtain

Pnnss
= P̃(0)

ss + D
(
I + P̃0Jss

)−1

P̃0DT + kD

and substitution in Eq. (44) yields

Pnss
= Us

(
P̃(0)

ss + D
(
I + P̃0Jss

)−1

P̃0DT + kD
)

UT
s

Finally, substitution in Eq. (42) leads to

Ps
ss = Q1/2

s Us

(
P̃(0)

ss + D
(
I + P̃0Jss

)−1

P̃0DT + kD
)

UT
s Q1/2

s (67)

We now treat each of the terms in the last expression independently, to produce a simpler expression. The term that
contributes with a constant rate of increase inPs

ss is given by

Pr(k) = kQ1/2
s UsDUT

s Q1/2
s

= kQ1/2
s Us

[
0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) I2×2

]
UT

s Q1/2
s

= kQ1/2
s

(
U2N−1UT

2N−1 + U2NUT
2N

)
Q1/2

s

whereU2N−1 andU2N are the singular vectors ofCs corresponding to the zero singular values. Using the expressions
from Eqs. (176) and (177), and carrying out the algebra, we obtain

Pr(k) = kqsT
1N×N ⊗ I2×2 (68)

The term ofPs
ss expressing the effect of the initial uncertainty is given by

Pinit = Q1/2
s UsD

(
I + P̃0Jss

)−1

P̃0DT UT
s Q1/2

s

= Q1/2
s UsDUT

s Us

(
I + UT

s Q−1/2
s P0Q−1/2

s UsJss

)−1

UT
s Q−1/2

s P0Q−1/2
s UsDT UT

s Q1/2
s

where we have used Eq. (62). We now note that

Q1/2
s UsDUT

s Q1/2
s = qsT

1N×N ⊗ I2×2

and thus

Pinit = q2
sT

(1N×N ⊗ I2×2)Q−1/2
s Us

(
I + UT

s Q−1/2
s P0Q−1/2

s UsJss

)−1

UT
s Q−1/2

s P0Q−1
s (1N×N ⊗ I2×2)

= q2
sT

(1N×N ⊗ I2×2)Q−1/2
s

(
I + Q−1/2

s P0Q−1/2
s UsJssUT

s

)−1

Q−1/2
s P0Q−1

s (1N×N ⊗ I2×2) (69)

= q2
sT

(1N×N ⊗ I2×2)Q−1/2
s

(
Q1/2

s + P0Q−1/2
s UsJssUT

s

)−1

P0Q−1
s (1N×N ⊗ I2×2)

= q2
sT

(1N×N ⊗ I2×2)Q−1
s

(
I + P0Q−1/2

s UsJssUT
s Q−1/2

s

)−1

P0Q−1
s (1N×N ⊗ I2×2)

We denote

h(λi) =
λi

2
+

√
λ2

i

4
+ λi
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and thus
UsJssUT

s = Us diag (h(λi))UT
s = h(Cs)

With this notation, we can write

Pinit = q2
sT

(1N×N ⊗ I2×2)Q−1
s

(
I + P0Q−1/2

s h(Cs)Q−1/2
s

)−1

P0Q−1
s (1N×N ⊗ I2×2)

From the properties of the Kronecker product we obtain

1N×N ⊗ I2×2 = (1N×111×N )⊗ I2×2 = (1N×1 ⊗ I2×2) (11×N ⊗ I2×2)

Additionally, we note that ifW is a2N × 2N matrix, then

(1N×1 ⊗ I2×2)W (11×N ⊗ I2×2) = (1N×1 ⊗ I2×2) (11×N ⊗ I2×2) W (1N×1 ⊗ I2×2) (11×N ⊗ I2×2)

= (1N×1 ⊗ I2×2)
(

(11×N ⊗ I2×2) W (1N×1 ⊗ I2×2)
)

(11×N ⊗ I2×2)

= (1N×N ⊗ I2×2)⊗
(

(11×N ⊗ I2×2) W (1N×1 ⊗ I2×2)
)

Using these results, we see thatPinit can be written as

Pinit = q2
sT

(1N×N ⊗ I2×2)⊗
[
α β
β δ

]

where [
α β
β δ

]
= (11×N ⊗ I2×2)Q−1

s

(
I + P0Q−1/2

s h(Cs)Q−1/2
s

)−1

P0Q−1
s (1N×1 ⊗ I2×2)

= (11×N ⊗ I2×2) W (1N×1 ⊗ I2×2) (70)

with

W = Q−1
s

(
I + P0Q−1/2

s h(Cs)Q−1/2
s

)−1

P0Q−1
s = [wij ]

From this expression, we conclude thatα =
∑

i,j odd wij (δ =
∑

i,j even wij) is the sum of all elements ofW with
two odd (even) indices andβ =

∑
i odd,j even wij is the sum of all elements ofW with an odd row index and an even

column index.
To summarize, we have shown that the steady state solution of the Riccati recursion (41) when the system is not

observable, is given by

Ps
ss = kqsT 1N×N ⊗ I2×2 + Q1/2

s Us

[
diag2N−2

(
1
2 +

√
1
4 + 1

λi

)
0(2N−2)×2

02×(2N−2) 02×2

]
UT

s Q1/2
s

+ q2
sT

(1N×N ⊗ I2×2)⊗
[
α β
β δ

]
(71)

Finally, from this result, by setting
Rs → Ru, Qs → Qu

and
Rs → R̄ , Qs → Q̄

we can derive the following lemmas:

Lemma 2.7 The steady state covariance of the position estimates for a team of robots performing CL, when none of
the robots has access to absolute positioning information, and the initial covariance of the robots’ position estimates
is P0, is bounded above by the matrix

Pu
ss = kquT 1N×N ⊗ I2×2 + Q1/2

u Uu

[
diag2N−2

(
1
2 +

√
1
4 + 1

λui

)
0(2N−2)×2

02×(2N−2) 02×2

]
UT

u Q1/2
u

+ q2
uT

(1N×N ⊗ I2×2)⊗
[
αu βu

βu δu

]
(72)
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where we have denoted the singular value decomposition ofCu = Q1/2
u HT

o R−1
u HoQ

1/2
u as Cu = Uu diag(λui

)UT
u ,

andquT
is defined by

1
quT

=
N∑

i=1

1
qui

For computing the values ofαu, βu andδu, we define

W = Q−1
u

(
I + P0Q−1/2

u h(Cu)Q−1/2
u

)−1

P0Q−1
u = [wij ]

where

h(Cu) = Uu diag

(
λui

2
+

√
λ2

ui

4
+ λui

)
UT

u

With this notation,αu =
∑

i,j odd wij (δu =
∑

i,j even wij) is the sum of all elements ofW with two odd (even)
indices andβu =

∑
i odd,j even wij is the sum of all elements ofW with an odd row index and an even column index.

Lemma 2.8 The expected steady state covariance of the position estimates for a team of robots performing CL, when
none of the robots has access to absolute positioning information, and the initial covariance of the robots’ position
estimates isP0, is bounded above by the matrix

P̄ss = kq̄T 1N×N ⊗ I2×2 + Q̄1/2Ū

[
diag2N−2

(
1
2 +

√
1
4 + 1

λ̄i

)
0(2N−2)×2

02×(2N−2) 02×2

]
ŪT Q̄1/2

+ q̄2
T (1N×N ⊗ I2×2)⊗

[
ᾱ β̄
β̄ δ̄

]
(73)

where we have denoted the singular value decomposition ofC̄ = Q̄1/2HT
o R̄−1HoQ̄1/2 as C̄ = Ūdiag(λ̄i)ŪT ,

and q̄T is defined by

1
q̄T

=
N∑

i=1

1
q̄i

For computing the values of̄α, β̄ and δ̄, we define

W̄ = Q̄−1
(
I + P0Q̄−1/2h(C̄)Q̄−1/2

)−1

P0Q̄−1 = [w̄ij ]

where

h(C̄) = Ūdiag

(
λ̄i

2
+

√
λ̄2

i

4
+ λ̄i

)
ŪT

With this notation,̄α =
∑

i,j odd w̄ij (δ̄ =
∑

i,j even w̄ij) is the sum of all elements ofW with two odd (even) indices
andβ =

∑
i odd,j even w̄ij is the sum of all elements of̄W with an odd row index and an even column index.

Several observations can be made with respect to the above results. We note that the upper bounds comprise of
three terms, the first of which contributes with aconstant rateof uncertainty increase. The second term is a constant
term, whose value depends on thetopologyof the RPMG and theaccuracyof the sensors on the robots. Finally, the
third term is a constant term that describes the effect of theinitial uncertaintyon the steady-state covariance. It also
depends on the noise characteristics of the sensors of the robots, as well as the RPMG topology. The fact that the
steady-state bound depends on the initial uncertainty is a consequence of the fact that the system isnot observable,
and therefore initial errors in the estimates for the robots’ positions cannot be fully compensated for.

It is clear that the most important term in the bounds is the one that corresponds to aconstant rateof uncertainty
increase. After sufficient time, this term will always dominate the remaining ones, and will largely determine the
positioning performance of the team. A striking observation is thatquT andq̄T areindependentof both the topology
of the RPMG and of the precision of the robots’ relative position measurements. This quantity depends solely on the
number of robots in the team, and the accuracy of the robots’ Dead Reckoning capabilities. An intuitive interpretation
of this result is that the primary factor determining the rate of uncertainty increase is the rate at which uncertainty
is injected in the unobservable subspace of the system. Since the number, or the accuracy, of the relative position
measurements does not alter this subspace, we should expect no change in the rate of uncertainty increase, as a result
of changes in the information contributed by the exteroceptive measurements.
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2.5 RPMG Reconfigurations

In the preceding analysis, it is assumed that the topology of the graph describing the relative position measurements
between robots does not change. However, this may be difficult to implement in a realistic scenario. For example,
due to the robots’ motion or because of obstacles in the environment, some robots may not be able to measure their
relative positions. Additionally, robot teams often need to allocate computational and communication resources to
mission-specific tasks and this may force them to reduce the number of measurements they process for localization
purposes. Consequently, it is of considerable interest to study the effects of changes in the topology of the RPMG on
the localization accuracy of the team.

Consider the following scenario: At the initial stage of the deployment of a robotic team, the RPMG has a dense
topologyTA, e.g., the complete graph shown in Fig. 8(a), and retains this topology until some time instantt1, when it
assumes a sparser topologyTB , e.g., the ring graph shown in Fig. 8(b). This sparse topology may even be anempty
graph, i.e., the case in which the robots localize independently, based only on odometry. Subsequent topology changes
are assumed to occur at time instantsti, i = 1 . . . n− 1, and finally, at time instanttn, the RPMG returns to its initial,
dense topology,TA. Assuming that the time intervals(ti−1, ti) are of sufficient duration for the transient phenomena
in the time evolution of uncertainty to subside, the following lemma applies:

Lemma 2.9 After a sequence of RPMG reconfigurations and once the RPMG resumes its initial topology, the upper
bounds on the positioning uncertainty of the robots at steady state areidenticalto the ones the robot team would have
if no RPMG reconfigurations had taken place.

Proof For the purposes of this proof, we will use the result of Eq. (71). For convenience, we will express this equation
with respect to the normalized covariance matrixPnk

= Q−1/2
s Ps

kQ
−1/2
s . In particular, we have

Pnss = Q−1/2
s Ps

ssQ
−1/2
s

= kqsT Q−1/2
s (1N×N ⊗ I2×2)Q−1/2

s + Us

[
diag2N−2

(
1
2 +

√
1
4 + 1

λi

)
0(2N−2)×2

02×(2N−2) 02×2

]
UT

s

+ q2
sT

Q−1/2
s (1N×N ⊗ I2×2)⊗

[
α β
β δ

]
Q−1/2

s

Employing the results of Eqs. (176) and (177), we can see that the column vectors of the matrix

V =
√

qsT Q−1/2
s 1N×1 ⊗ I2×2

are the two basis vectors of the nullspace ofCs. For this matrix we have

VVT = qsT Q−1/2
s (1N×1 ⊗ I2×2) (11×N ⊗ I2×2)Q−1/2

s = qsT Q−1/2
s (1N×N ⊗ I2×2)Q−1/2

s

and therefore we can write

Pnss = kVVT + Us

[
diag2N−2

(
1
2 +

√
1
4 + 1

λi

)
0(2N−2)×2

02×(2N−2) 02×2

]
UT

s (74)

+ q2
sT

Q−1/2
s (1N×N ⊗ I2×2)⊗

[
α β
β δ

]
Q−1/2

s (75)

Moreover, the quantity that expresses the effect of the initial uncertainty can be expressed equivalently as (cf. Eq. (69)):

Pinit = q2
sT

(1N×N ⊗ I2×2)⊗
[
α β
β δ

]

= q2
sT

(1N×N ⊗ I2×2)Q−1/2
s

(
I + Q−1/2

s P0Q−1/2
s UsJssUT

s

)−1

Q−1/2
s P0Q−1

s (1N×N ⊗ I2×2)

= q2
sT

(1N×N ⊗ I2×2)Q−1/2
s (I + Pn0h(Cs))

−1 Pn0Q
−1/2
s (1N×N ⊗ I2×2)

= Q1/2
s VVT (I + Pn0h(Cs))

−1 Pn0VVT Q1/2
s
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Therefore Eq. (74) is equivalently written as

Pnss = kVVT + Us

[
diag2N−2

(
1
2 +

√
1
4 + 1

λi

)
0(2N−2)×2

02×(2N−2) 02×2

]
UT

s

+ VVT (I + Pn0h(Cs))
−1 Pn0VVT (76)

Introducing the notation

f(λi) =
1
2

+
√

1
4

+
1
λi

further simplifies the preceding expression, to yield:

Pnss
= kVVT + Us

[
diag2N−2 (f(λi)) 0(2N−2)×2

02×(2N−2) 02×2

]
UT

s + VVT (I + Pn0h(Cs))
−1 Pn0VVT

= V
(
kI2×2 + VT (I + Pn0h(Cs))

−1 Pn0V
)
VT + Us

[
diag2N−2 (f(λi)) 0(2N−2)×2

02×(2N−2) 02×2

]
UT

s

= Us

[
diag2N−2 (f(λi)) 0(2N−2)×2

02×(2N−2) kI2×2 + VT (I + Pn0h(Cs))
−1 Pn0V

]
UT

s (77)

where we have employed the fact that the matrix of singular vectorsUs can be partitioned as

Us = [S V]

with S being the2N × (2N − 2) matrix of singular vectors corresponding to the nonzero singular values ofCs.
Assuming that the RPMG remains in the topologyTA for the time-step interval[0, t1], and that this interval is of

sufficient duration for the covariance to reach steady state, then at time-stept1 the normalized covariance matrix is
given by

Pnss(t1) = UA

[
diag2N−2 (f(λAi)) 0(2N−2)×2

02×(2N−2) t1I2×2 + MA

]
UT

A (78)

where
MA = VT (I + Pn0h(CA))−1 Pn0V

In these expressions the quantities that depend on the RPMG topologyTA have been denoted by the subscriptA. It
is important to note that the basis vectors of the nullspace of the matrixCs are independentof the topology of the
RPMG. This essentially is a consequence of the fact that the unobservable subspace remains the same, regardless of
the topology of the RPMG.

During the second phase, the RPMG remains in topologyTB for the time interval[t1, t2]. Thus, if steady state is
reached, at time stept2, the normalized covariance is given by

Pnss(t2) = UB

[
diag2N−2 (f(λBi)) 0(2N−2)×2

02×(2N−2) (t2 − t1)I2×2 + MB

]
UT

B (79)

where
MB = VT (I + Pnss(t1)h(CB))−1 Pnss(t1)V

We will now derive a simpler expression forMB . We start by applying the matrix inversion lemma, to obtain

MB = VT (I + Pnss(t1)h(CB))−1 Pnss(t1)V

= VT Pnss(t1)V −VT Pnss(t1) (I + h(CB)Pnss(t1))
−1

h(CB)Pnss(t1)V

We now study the matrix productZ = h(CB)Pnss(t1)V, that appears in the last equation. We have

Z = UB diag (h(λBi))U
T
BUA

[
diag2N−2 (f(λAi)) 0(2N−2)×2

02×(2N−2) t1I2×2 + MA

]
UT

AV

= UB diag (h(λBi))
[
ST

B

VT

] [
SA V

] [
diag2N−2 (f(λAi)) 0(2N−2)×2

02×(2N−2) t1I2×2 + MA

] [
ST

A

VT

]
V

= UB diag (h(λBi))
[

ST
BSA 0(2N−2)×2

02×(2N−2) I2×2

] [
diag2N−2 (f(λAi)) 0(2N−2)×2

02×(2N−2) t1I2×2 + MA

] [
0(2N−2)×2

I2×2

]
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In the last line we have used the fact thatST
AV = ST

BV = 0(2N−2)×2, which results from the orthogonality of the
columns of the matricesUA andUB . We also note that the last two diagonal elements ofdiag (h(λBi

)) (i.e., the ones
that correspond to the zero eigenvalues) are equal to zero. ThusZ can be written as

Z = UB

[
diag2N−2 (h(λBi

))ST
BSA 0(2N−2)×2

02×(2N−2) 02×2

] [
diag2N−2 (f(λAi

)) 0(2N−2)×2

02×(2N−2) t1I2×2 + MA

] [
ST

A

VT

]
V

= UB

[
diag2N−2 (h(λBi))S

T
BSA diag2N−2 (f(λAi)) 0(2N−2)×2

02×(2N−2) 02×2

] [
0(2N−2)×2

I2×2

]

= UB

[
diag2N−2 (h(λBi))S

T
BSA diag2N−2 (f(λAi)) 0(2N−2)×2

02×(2N−2) 02×2

] [
0(2N−2)×2

I2×2

]

= 0(2N−2)×2

Using this result,MB can be written as

MB = VT Pnss
(t1)V

= VT UA

[
diag2N−2 (f(λAi)) 0(2N−2)×2

02×(2N−2) t1I2×2 + MA

]
UT

AV

= VT
[
SA V

] [
diag2N−2 (f(λAi)) 0(2N−2)×2

02×(2N−2) t1I2×2 + MA

] [
ST

A

VT

]
V

=
[
02×(2N−2) I2×2

] [
diag2N−2 (f(λAi

)) 0(2N−2)×2

02×(2N−2) t1I2×2 + MA

] [
0(2N−2)×2

I2×2

]

= t1I2×2 + MA

Substitution of this result in Eq. (79) yields

Pnss(t2) = UB

[
diag2N−2 (f(λBi)) 0(2N−2)×2

02×(2N−2) t2I2×2 + MA

]
UT

B (80)

From the last expression, we conclude that the term describing the effect of the initial uncertainty isthe samefor both
topologiesTA andTB .

If at time stept2 the RPMG assumes its initial topology,TA, once again, then by a similar proof we can show that
the value of the normalized covariance at some timet3 > t2 is given by

Pnss(t3) = UA

[
diag2N−2 (f(λAi)) 0(2N−2)×2

02×(2N−2) t3I2×2 + MA

]
UT

A (81)

However, we can see that this result is the same one that would result from use of Eq. (77) ifno reconfigurationshad
occurred. We have thus proved the lemma for the case where the intermediate topologyTB is a connected one.

If during the intermediate phase the robots localize based only on odometry, then during this time interval their
covariance bounds are propagated by

Ps
k+1 = Ps

k + Qs

or, expressed using the normalized covariance,

Pnk+1 = Pnk
+ I2N×2N

Thus, at time stept2 we would have

Pnod(t2) = Pnss(t1) + (t2 − t1)I2N×2N

= UA

[
diag2N−2 (f(λAi)) 0(2N−2)×2

02×(2N−2) t1I2×2 + MA

]
UT

A + (t2 − t1)I2N×2N

= UA

[
diag2N−2 (f(λAi)) + (t2 − t1)I(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) t2I2×2 + MA

]
UT

A (82)

By comparison of this result with the result of Eq. (80) we observe that the basic structure of the covariance matrix
remains the same. By a proof analogous to the one presented in the preceding analysis, we can show that Eq. (81)
holds without change.
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Up to this point, we have proven the lemma for the situations where the intermediate topology,TB , is either a
connected or an empty graph. To show that the lemma also holds for any other possible topologyTB (for example, the
case in which only some of the robots localize using odometry, while a subgroup or robots can still record relative po-
sition measurements) we study the Riccati recursion that describes the normalized covariance during the intermediate
phase. This recursion can be written as (cf. Eq. (89)):

Pnk+1 =
(
P−1

nk
+ Cs

)−1
+ I2N×2N (83)

where
Cs = Q1/2

s HT
o R−1

s HoQ1/2
s

If the RPMG is not a connected one, then the matrixHT
o R−1

s Ho, which expresses the information provided by the
exteroceptive measurements, will satisfy the relation:

HT
o R−1

s Ho ≺ H′T
o R′−1

s H′
o

where the matricesH′T
o andR′

s correspond to aconnectedRPMG that contains the original one as a subgraph. As
a consequence, the original matrixCs and the one corresponding to the connected graph will satisfyCs ≺ C′

s.
However, it is easy to show that the right hand side of Eq. (83) is a matrix-decreasing function ofCs, which means
that

Cs ≺ C′
s ⇒ Pnk+1 º P′nk+1

Additionally, in Appendix A it is shown that the right hand side of the Riccati recursion is a matrix-increasing function
of the covariance matrixPnk

. Using these two results, and applying induction, in a fashion similar to the one presented
in Appendix A, we can show that the value of the covariance matrix at timet2 will satisfy Pnss(t2) ¹ P′nss

(t2).
In Appendix I it is shown that the matrix

MA = VT (I + Pnss(t2)h(CA))−1 Pnss(t2)V

is a matrix-increasing function of the covariancePnss(t2). This means that

Pnss(t2) ¹ P′nss
(t2) ⇒ MA ¹ M ′

A

But we have seen that
Pnss(t2) ¹ P′nss

(t2) ¹ Pnod(t2)

and that for the matricesPnss(t2) andPnod(t2) the value ofMA is the same. Thus, we conclude that for any possible
topology, the value ofMA will be identical to the one derived for the case of a connected graph and for the case of
Dead Reckoning. This implies that the lemma holds for any possible intermediate topologyTB .

This is a significant result due to its important implications. Consider the scenario where the robots of a team,
during a phase of their mission, are forced to receive and process a small number of measurements, or even resort to
mere Dead Reckoning, due to communication or sensor failures, or because CPU and bandwidth resources are required
by other tasks of higher priority. During this interval, a reduced amount of positioning information is available to the
robots (sparse RPMG topology) and as a result the performance of CL will temporarily deteriorate. However, once
the initial, dense RPMG topology is restored, the team’s positioning performance will have sustainedno degradation.
Furthermore, Lemma 2.9 indicates that a dense topology for the RPMG during the initial phase of the deployment
of a robot team has a long-term effect on the localization performance of the team. Specifically, if during the initial
deployment, the robots leverage their communication and computational resources to support a dense RPMG, this will
improve their positioning accuracy at the beginning of CL. Later on, and as the robots focus on mission-specific and
other time-critical tasks, they will have to rely on sparser RPMGs as resources dictate. However, when at a subsequent
time instant the RPMG resumes its initial, dense topology, the above lemma guarantees that the maximum expected
uncertainty will beidentical to the one that would arise if the dense RPMG topology was retained throughout the run
of the robots.
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3 Continuous-Time Analysis

3.1 Motivation

In the previous section, the analysis was presented in discrete time, under the assumption that all the measurements
(exteroceptive and proprioceptive) are available at the same frequency. However, in practice different sensors usually
have different sampling rates. In order to address this problem, we present in this section a continuous-time analysis of
the performance of CL. For a robot team with a set of sensors each of which has a given accuracy and a given sampling
rate (in general different for each sensor), we can construct a continuous-time system model, in which the covariance
of the position estimates will be identical to the covariance of the position estimates in the actual, discrete-time system.

Assuming that the odometric measurements of roboti are available everyδti seconds, and that the standard devi-
ations of velocity and orientation errors in discrete time areσVdi

andσφdi
respectively, then selecting

σVci
=

√
δtiσVdi

, and σφci
=

√
δtiσφdi

(84)

yields an “equivalent” continuous time system model, in the sense that for both systems the the rate of influx of
uncertainty due to system noise is identical. The proof of this result is given in Appendix G.

Similarly, if exteroceptive measurements whose covariance matrix isRdi
are available everyδt′i seconds for the

i-th robot, then the covariance matrix function of the measurements in the equivalent continuous time system model is
(Rdi

δt′i) δ(t − τ), whereδ(t − τ) is the Dirac delta function [12]. The factorδt′i can be seen as a normalizing factor
to ensure that the information influx in the system due to the exteroceptive measurements is appropriately scaled with
the sampling frequency of these measurements.

In the following sections, the continuous-time analysis is presented. Since many readers are not familiar with the
continuous-time EKF and the continuous-time Riccati equation, we first present an analysis for a hypothetical scenario
of a team or robots localizing in a one-dimensional environment. In this simple case the main results of the derivations
can be exhibited more clearly, and a more intuitive understanding can be developed.

3.2 Motion in 1D

A group ofN robots moving in 1D uses proprioceptive measurements (e.g. velocity) to propagate their state estimates.
The continuous-time state propagation equation for this system is written as (cf. Appendix C):

ẋ(t) = v(t) + w(t)

wherex(t) is a vector containing the positions of the robots,v(t) is the input (here the velocities of the robots), and
w(t) is the noise in the measurements of these velocities. By comparison with Eq. (167) we see thatF (t) = 0N×N ,
and alsoB(t) = G(t) = IN×N , the identity matrix3. w(t) is assumed to be white zero-mean Gaussian, with constant
covariance matrixQ. Since the noise processes that corrupt the measurements of different robots are independent,Q
is a diagonal matrix,Q = diag(qi), whereqi is the covariance of the noise affecting the measurements of theith robot.

The robots are also equipped with exteroceptive sensors that allow them to measure: (i) their relative position,
and (ii) their absolute position. We note that in this formulation absolute position measurements arenot required,
but availability of such measurements greatly improves localization performance. The measurement model for the
exteroceptive measurements is:

z(t) = Hx(t) + n(t) (85)

whereH is the measurement matrix, relating the measurements with the current state of the system, andn is the noise
in the measurement, assumed white zero-mean Gaussian, with covariance matrixR.

In order to determine the behavior of the covariance, we need to study the eigenvaluesλ2
i of the matrixC =

Q1/2HT R−1HQ1/2. The types of measurements performed by the robots play a significant role in determining
these eigenvalues. We are here concerned with 2 different types of exteroceptive sensor measurements: (i) relative
position measurements, i.e., measurements of the difference of the positions of two robots, and (ii) absolute position
measurements. The measurement matrix can be written as

H =
[

HIJ

H0

]
(86)

3Throughout this Technical ReportIm×m denotes them ×m identity matrix,1m×n denotes them × n matrix of ones, and0m×n denotes
them× n matrix of zeros.
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whereHIJ andH0 are submatrices that correspond to the relative and absolute position measurements respectively.
These two matrices have a special structure. Specifically, matrixH0 is composed of a set of submatricesH0i that

contain a “1” at theith column, corresponding to the roboti receiving an absolute position measurement, i.e.

H0 =




...
H0i

...




with

H0i =
[

0 . . . 1 . . . 0
]

On the other hand, matrixHIJ comprises of rows, each of which corresponds to a relative position measurement, or
equivalently, to one edge of the RPMG. The row associated with the measurement between robotsi andj contains a
“-1”, at the column, corresponding to the roboti registering the relative position measurement, and a “1” at the column
that corresponds to the robotj which is observed in the measurement, i.e.

HIJ =




Hkl

...
Hmn




with

Hij =
[

0 . . . −1 . . . 1 . . . 0
]

The matrix so defined is identical with theincidence matrixof the RPMG, when this is viewed as an unweighted graph.
In Appendix E.1 it is shown that when the robots do not receive absolute position measurements (in which case the
measurement matrixH equalsHIJ ), C has exactly one eigenvalue equal to zero. Contrary to that, when at least one
robot receives absolute positioning information, all eigenvalues are greater than zero.

UsingF = 0N×N , B = IN×N , andG = IN×N , the continuous time Riccati equation that describes the time
evolution of the covariance for the position estimates of the robots is written as (cf. Eq. (169)):

Ṗ = Q− PHT R−1HP (87)

For the solution of this matrix differential equation the standard methodology involving the decomposition ofP (t)
into two matrices, and forming the Hamiltonian matrix is employed [13]. The solution is described in what follows.

In order to facilitate the derivations, we first define asPn thenormalized covariance

Pn = Q−1/2PQ−1/2 ⇒ P = Q1/2PnQ1/2 (88)

Substitution in Eq. (87) yields

Q1/2ṖnQ1/2 = Q−Q1/2PnQ1/2HT R−1HQ1/2PnQ1/2 ⇒
Ṗn = IN×N − PnQ1/2HT R−1HQ1/2Pn

We introduce the matrixC = Q1/2HT R−1HQ1/2, and the previous equation is simplified to:

Ṗn = IN×N − PnCPn (89)

The solution to this equation is found by substituting

Pn = AB−1 (90)

Note that since

BB−1 = IN×N
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it is

d

dt

(
BB−1

)
= 0N×N ⇒

ḂB−1 + B
d

dt
(B−1) = 0N×N ⇒

d

dt
(B−1) = −B−1ḂB−1

Substituting in Eq. (90) we have

Ṗn = ȦB−1 −AB−1ḂB−1 (91)

Using Eqs. (90) and (91), Eq. (89) can be written as:

ȦB−1 −AB−1ḂB−1 = IN×N −AB−1CAB−1

Multiplying both sides by B we have

Ȧ−AB−1Ḃ = B −AB−1CA

Separating the nonlinear from the linear terms and noting that

−AB−1Ḃ = −AB−1CA ⇒
Ḃ = CA

we can decompose the Riccati in the following two equations:

Ȧ = B

Ḃ = CA

or in a matrix form
[

Ḃ

Ȧ

]
=

[
0N×N C
IN×N 0N×N

] [
B
A

]
(92)

Where the matrix

H =
[

0N×N C
IN×N 0N×N

]
(93)

is the Hamiltonian of this system. The general solution of Eq. (92) is given by
[

B(t)
A(t)

]
= eHt

[
B(0)
A(0)

]
(94)

whereA(0) and B(0) are the initial values for these matrices. These are selected so that the identityPn(0) =
A(0)B−1(0) holds, i.e.,A(0) = Pn(0) andB(0) = IN×N . Employing Taylor series expansion for computing the
exponential of the Hamiltonian matrix yields:

eHt = IN×N +Ht +
H2t2

2!
+
H3t3

3!
+ · · · =

=

[
IN×N + C t2

2! + C2 t4

4! + C3 t6

6! + · · · C t
1! + C2 t3

3! + C3 t5

5! + · · ·
t
1!IN×N + C t3

3! + C2 t5

5! + · · · IN×N + C t2

2! + C2 t4

4! + C3 t6

6! + · · ·

]

In order to derive a simpler expression for this relation, the Singular Value Decomposition ofC is employed. That
is, we writeC = UΛUT whereU is an orthonormal matrix containing the singular vectors ofC, andΛ is a diagonal
matrix whose diagonal elements are the eigenvalues ofC. SinceC = Q1/2HT R−1HQ1/2 is a symmetric positive
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semidefinite matrix, its eigenvalues,λ2
i , are real and nonnegative (and equal the squares of the singular valuesλi of

Q1/2HT R−1/2), i.e. Λ = diag(λ2
i ). We also note that since for symmetric positive semidefinite matrices, such as

C, the singular values are identical to the eigenvalues, and the eigenvectors to the singular vectors, these terms can be
used interchangeably.

We now manipulate each of the submatrices comprisingeHt separately. The 2 diagonal submatrices are equal to
each other, and are given by:

eHt(1, 1) = eHt(2, 2) = IN×N + C
t2

2!
+ C2 t4

4!
+ C3 t6

6!
+ · · ·

= IN×N + UΛUT t2

2!
+ (UΛUT )2

t4

4!
+ (UΛUT )3

t6

6!
+ · · ·

= IN×N + UΛUT t2

2!
+ UΛ2UT t4

4!
+ UΛ3UT t6

6!
+ · · ·

= U(IN×N + Λ
t2

2!
+ Λ2 t4

4!
+ Λ3 t6

6!
+ · · · )UT

= U(IN×N + (Λ1/2)2
t2

2!
+ (Λ1/2)4

t4

4!
+ (Λ1/2)6

t6

6!
+ · · · )UT

= U diag
(

1 + λ2
i

t2

2!
+ λ4

i

t4

4!
+ λ6

i

t6

6!
+ · · ·

)
UT

=
1
2
U diag

(
eλit + e−λit

)
UT

To obtain the last expression, the result from Appendix D was used. The upper right submatrix ofeHt is given by:

eHt(1, 2) = C
t

1!
+ C2 t3

3!
+ C3 t5

5!
+ · · ·

= UΛUT (IN×N t + UΛUT t3

3!
+ UΛ2UT t5

5!
+ · · · )

= UΛUT U(t + Λ
t3

3!
+ Λ2 t5

5!
+ · · · )UT

= UΛ1/2(Λ1/2t + Λ3/2 t3

3!
+ Λ5/2 t5

5!
+ · · · )UT

= U diag
(

λi(λit + λ3
i

t3

3!
+ λ5

i

t5

5!
+ · · · )

)
UT

=
1
2
U diag

(
λi(eλit − e−λit)

)
UT

We treat the lower left submatrix ofeHt in a similar manner:

eHt(2, 1) =
t

1!
IN×N + C

t3

3!
+ C2 t5

5!
+ · · ·

= tIN×N + UΛUT t3

3!
+ UΛ2UT t5

5!
+ · · ·

= U(tIN×N + Λ
t3

3!
+ Λ2 t5

5!
+ · · · )UT

= UΛ−1/2(tΛ1/2 + Λ3/2 t3

3!
+ Λ5/2 t5

5!
+ · · · )UT

= U diag
(

1
λi

(λit + λ3
i

t3

3!
+ λ5

i

t5

5!
+ · · · )

)
UT

=
1
2
U diag

(
eλit − e−λit

λi

)
UT

In Appendix E.1 it is shown, that when none of the robots receives absolute position measurements, the smallest

eigenvalue ofC is equal to zero. Thus, in this case the quantitydiag
(

eλit−e−λit

λi

)
that appears in the last expression
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presents a problem, since the eigenvalues appear in the denominator. Note that the quantity being divided by the zero
eigenvalue is also equal to zero (e0t − e−0t = 0) and therefore the above expression is actually undefined. However,
in Appendix F it is proven formally that the quantity under consideration exists, and is given by

eHt(2, 1) =
1
2
U

[
diagN−1

(
eλit−e−λit

λi

)
02×(N−1)

0(N−1)×1 2t

]
UT (95)

This expression is quite cumbersome, and its use would make the resulting formulas unappealing and difficult to
understand. We will therefore continue to use the initial, less strict notation in the following, bearing in mind that its
true meaning is given by this last expression.

Combining th previous results, the following expression foreHt is derived:

eHt =

[
1
2U diag

(
eλit + e−λit

)
UT 1

2U diag
(
λi(eλit − e−λit)

)
UT

1
2U diag

(
eλit−e−λit

λi

)
UT 1

2U diag
(
eλit + e−λit

)
UT

]
(96)

Substituting foreHt in (94) and using the initial valuesA(0) = Pn(0), B(0) = IN×N , yields:

[
B(t)
A(t)

]
= eHt

[
IN×N

Pn(0)

]
=

[
1
2U diag

(
eλit + e−λit

)
UT + 1

2U diag
(
λi(eλit − e−λit)

)
UT Pn(0)

1
2U diag

(
eλit−e−λit

λi

)
UT + 1

2U diag
(
eλit + e−λit

)
UT Pn(0)

]

Thus, using Eq. (90) the solution for the normalized covariance becomes:

Pn(t) =
(

1
2
U diag

(
eλit − e−λit

λi

)
UT +

1
2
U diag

(
eλit + e−λit

)
UT Pn(0)

)
×

×
(

1
2
Udiag

(
eλit + e−λit

)
UT +

1
2
U diag

(
λi(eλit − e−λit)

)
UT Pn(0)

)−1

= U

(
diag

(
eλit − e−λit

λi

)
+ diag

(
eλit + e−λit

)
UT Pn(0)U

)
×

× (
diag

(
eλit + e−λit

)
+ diag

(
λi(eλit − e−λit)

)
UT Pn(0)U

)−1
UT

= U (K(t) + L(t)P0) (L(t) + ΛK(t)P0)
−1

UT (97)

Where we have denoted

K(t) = diag
(

eλit − e−λit

λi

)

L(t) = diag
(
eλit + e−λit

)

and
P0 = UT Pn(0)U

We will now show thatPn(t) can be written as

Pn(t) = U
(
K(t)L(t)−1 + M(t)

)
UT (98)

whereM(t) is a matrix to be specified. For notation simplicity, we drop the time arguments fromK(t), L(t) and
M(t) in the following. From Eqs. (97) and (98) we have:

Pn(t) = U(K + LP0)(L + ΛKP0)−1UT = U
(
KL−1 + M

)
UT ⇒

(K + LP0)(L + ΛKP0)−1 =
(
KL−1 + M

) ⇒
K + LP0 =

(
KL−1 + M

)
(L + ΛKP0) ⇒

K + LP0 = K + L−1K2ΛP0 + M(L + ΛKP0) ⇒(
L− L−1K2Λ

)
P0 = M(L + ΛKP0) ⇒
M =

(
L− L−1K2Λ

)
P0(L + ΛKP0)−1
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We note that :

L− L−1K2Λ = L
(
IN×N − L−2K2Λ

)

= diag
(
eλit + e−λit

)
(

IN×N − diag
(
eλit + e−λit

)−2
diag

(
eλit − e−λit

λi

)2

diag(λ2
i )

)

= diag
(
eλit + e−λit

)
(

IN×N − diag
(

eλit − e−λit

eλit + e−λit

)2
)

= diag
(
eλit + e−λit

)
(

diag
(

(eλit + e−λit)2 − (eλit − e−λit)2

eλit + e−λit

)2
)

= diag
(

(eλit + e−λit)2 − (eλit − e−λit)2

eλit + e−λit

)

= diag
(

4
eλit + e−λit

)

= 4L−1

ThusM can be written as

M =
(
L− L−1K2Λ

)
P0(L + ΛKP0)−1

= 4L−1P0(L + ΛKP0)−1

= 4L−1P0

(
IN×N + ΛKL−1P0

)−1
L−1

and substitution in (98) yields:

Pn(t) = U
(
KL−1 + 4L−1P0

(
IN×N + ΛKL−1P0

)−1
L−1

)
UT (99)

To determine the behavior of the covariance at steady state, we compute the limit of the above quantity as time goes
to infinity. We identify two different cases, based on the availability of absolute position measurements.

3.2.1 Steady-State Covariance - Observable system

When at least one of the robots receives absolute position measurements, all the eigenvalues ofC will be positive, and
thus at steady state (i.e., ast →∞), we obtain:

lim
t→∞

KL−1 = lim
t→∞

diag
(

eλit − e−λit

λi

)
diag

(
eλit + e−λit

)−1

= diag
(

1
λi

)

And also

lim
t→∞

4L−1P0

(
IN×N + ΛKL−1P0

)−1
L−1 = lim

t→∞
diag

(
eλit + e−λit

)−1
(IN×N + Λ1/2P0)−1 diag

(
eλit + e−λit

)−1

= 0N×N

Using the above two results, we see that

lim
t→∞

Pn(t) = lim
t→∞

U
(
KL−1 + 4L−1P0

(
IN×N + ΛKL−1P0

)−1
L−1

)
UT

= U diag
(

1
λi

)
UT

and therefore the steady state covariance for the position estimates of the robots will be

Pss(t) = Q1/2U diag
(

1
λi

)
UT Q1/2 = Q1/2

√
C−1Q1/2 (100)

TR-2003-0002 29



where
√

C−1 = UΛ−1/2UT is the matrix square root ofC−1, which always exists since the eigenvalues ofC are posi-
tive. Notice that when at least one robot receives absolute position measurements, the steady state uncertainty depends
on the topology of the RPMG (affectingC), and the uncertainty of proprioceptive and exteroceptive measurements,
represented byQ andR (which is embedded inC).

In order to gain more insight on how the measurement accuracy and the graph topology affect the steady state
localization uncertainty, we consider the simple case in whichQ = qI, andR = rI, i.e., a homogeneous robot group.
In this case, it is trivial to show that the expression for the steady state covariance reduces to

Pss =
√

qr
√

(HT H)−1 (101)

Since in this equation the effects of the graph topology and the measurement covariances are decoupled, we can see
more clearly the effect of the accuracy of the sensors on the steady state localization uncertainty.

3.2.2 Steady-State Covariance - Unobservable system

When none of the robots receives absolute positioning measurements, the smallest (N -th) singular value ofC equals
zero. Using the expression in Eq. (95), we can write

KL−1 = diag
(

eλit − e−λit

λi

)
diag

(
eλit + e−λit

)−1

=


 diagN−1

(
eλit−e−λit

λi(eλit+e−λit)

)
0N−1×1

01×N−1
2t

eλi0+e−λi0


 (102)

=


 diagN−1

(
eλit−e−λit

λi(eλit+e−λit)

)
0N−1×1

01×N−1 0


 +

[
0(N−1)×(N−1) 0(N−1)×1

01×(N−1) t

]

Taking the limit of the first term of this expression yields:

lim
t→∞


 diagN−1

(
eλit−e−λit

λi(eλit+e−λit)

)
0N−1×1

01×N−1 0


 =

[
diagN−1

(
1
λi

)
0(N−1)×1

01×(N−1) 0

]

And thus at steady state, the termKL−1 becomes
[

diagN−1

(
1
λi

)
0(N−1)×1

01×(N−1) t

]
(103)

In the last line, we have again usedt as the bottom right element of the matrix, to point out that this element contributes
with a constant rate of increase of uncertainty. We also note that

lim
t→∞

4L−1P0

(
IN×N + ΛKL−1P0

)−1
L−1 =

lim
t→∞

4

[
diagN−1

(
1

eλit+e−λit

)
0(N−1)×1

01×(N−1) 1/2

]
P0

(
IN×N + ΛKL−1P0

)−1

[
diagN−1

(
1

eλit+e−λit

)
0(N−1)×1

01×(N−1) 1/2

]

=
[

0(N−1)×(N−1) 0(N−1)×1

01×(N−1) 1

]
P0

(
IN×N + Λ1/2P0

)−1
[

0(N−1)×(N−1) 0(N−1)×1

01×(N−1) 1

]

By denoting

P0

(
IN×N + Λ1/2P0

)−1

=




m11 m12 ... m1N

...
...

...
...

mN1 mN2 ... mNN
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we can write

lim
t→∞

4L−1P0

(
IN×N + ΛKL−1P0

)−1
L−1 =

=
[

0(N−1)×(N−1) 0(N−1)×1

01×(N−1) 1

]



m11 m12 ... m1N

...
...

...
...

mN1 mN2 ... mNN




[
0(N−1)×(N−1) 0(N−1)×1

01×(N−1) 1

]

=




0 0 ... 0
0 0 ... 0
...

...
...

...
mN1 mN2 ... mNN




[
0(N−1)×(N−1) 0(N−1)×1

01×(N−1) 1

]

=
[

0(N−1)×(N−1) 0(N−1)×1

01×(N−1) mNN

]
(104)

Thus only the last element of the last row ofP0

(
IN×N + Λ1/2P0

)−1
is needed. Recalling thatP0 = UT Pn(0)U , we

can write

M = UT Pn(0)U
(
IN×N + Λ1/2UT Pn(0)U

)−1

= UT Pn(0)U
(
IN×N + Λ1/2UT Pn(0)U

)−1

UT U

= UT Pn(0)
(
UT

)−1
(
IN×N + Λ1/2UT Pn(0)U

)−1

UT U

= UT Pn(0)
(
UT + Λ1/2UT Pn(0)UUT

)−1

U−1U

= UT Pn(0)
(
UUT + UΛ1/2UT Pn(0)

)−1

U

= UT Pn(0)
(
IN×N +

√
CPn(0)

)−1

U

=
[

UT
1:N−1

UT
N

]
Pn(0)

(
IN×N +

√
CPn(0)

)−1 [
U1:N−1 UN

]

=




UT
1:N−1Pn(0)

(
IN×N +

√
CPn(0)

)−1

U1:N−1 UT
1:N−1Pn(0)

(
IN×N +

√
CPn(0)

)−1

UN

UT
NPn(0)

(
IN×N +

√
CPn(0)

)−1

U1:N−1 UT
NPn(0)

(
IN×N +

√
CPn(0)

)−1

UN




In the above,U1:N−1 is a matrix of dimensionsN×(N−1), consisting of theN−1 singular vectors ofC corresponding
to the nonzero singular values. From the above expression, we obtainmNN :

mNN = UT
NPn(0)

(
IN×N +

√
CPn(0)

)−1

UN (105)

In Appendix E.1 it is shown thatUN =
√

qtotalQ
−1/21N×1, where

1
qtotal

=
N∑

i=1

1
qi

(106)

Substitution in Eq. (105) yields:

mNN = qtotal1T
N×1Q

−1/2Pn(0)
(
IN×N +

√
CPn(0)

)−1

Q−1/21N×1

= qtotal1T
N×1Q

−1P (0)Q−1/2
(
IN×N +

√
CQ−1/2P (0)Q−1/2

)−1

Q−1/21N×1
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We denoteW = qtotalQ
−1P (0)Q−1/2

(
I +

√
CQ−1/2P (0)Q−1/2

)−1

Q−1/2 = [wij ], and the above relation re-

duces to

mNN =
∑

i,j

wij (107)

That is,mNN is the sum of all elements of the matrixW . Using this result, and the result of Eq. (103), we have the
following expression for the normalized steady state uncertainty:

Pn(t) = U

([
diagN−1

(
1
λi

)
0(N−1)×1

01×(N−1) t

]
+

[
0(N−1)×(N−1) 0(N−1)×1

01×(N−1) mNN

])
UT

Thus the actual uncertainty at steady state is:

P (t) = Q1/2U

([
diagN−1

(
1
λi

)
0(N−1)×1

01×(N−1) t

]
+

[
0(N−1)×(N−1) 0(N−1)×1

01×(N−1) mNN

])
UT Q1/2

= Q1/2U

[
diagN−1

(
1
λi

)
0(N−1)×1

01×(N−1) 0

]
UT Q1/2 + Q1/2U

[
0(N−1)×(N−1) 0(N−1)×1

01×(N−1) t + mNN

]
UT Q1/2

= P1 + P2(t) (108)

In the above relation, the termP1 is a constant term, that is independent of the initial uncertainty of the robots. The
termP2(t) can be written as

P2(t) = Q1/2U

[
0(N−1)×(N−1) 0(N−1)×1

01×(N−1) t + mNN

]
UT Q1/2

= (t + mNN ) Q1/2UNUT
NQ1/2

=


t +

∑

i,j

[wij ]


 qtotal 1N×N

= tqtotal1N×N +
∑

i,j

[wij ] qtotal1N×N

We have thus proven the following lemma:

Lemma 3.1 For a group ofN robots moving in 1D and performing cooperative localization, their positional uncer-
tainty at steady state grows linearly with respect to time, and is given by

Pss(t) = Q1/2U

[
diagN−1

(
1
λi

)
0(N−1)×1

01×(N−1) 0

]
UT Q1/2 +

∑

i,j

[wij ] qtotal 1N×N + t qtotal 1N×N

Where
1

qtotal
=

N∑

i=1

1
qi

and

W = qtotalQ
−1P (0)Q−1/2

(
IN×N +

√
CQ−1/2P (0)Q−1/2

)−1

Q−1/2 = [wij ]

It is worth noting that the rate at which the uncertainty grows isqtotal, and isidentical for all the robots in the group,
andindependentof the topology of the RPMG. We also note that from Eq. (106) it follows that

1
qtotal

=
N∑

i=1

1
qi
≥ 1

maxi(qi)
⇒ qtotal ≤ max

i
(qi) (109)
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In the absence of relative position measurements the uncertainty of each robot grows linearly with time, and is given
by Pi = qi t. Therefore, during CL the rate of uncertainty increase is smaller than the rate of increase the robot with
the best odometry sensors would have, in the absence of relative position measurements.

The constant term of the steady state covariance depends of the network topology (affecting the eigenvectors and
eigenvalues ofC), the initial uncertainty and the accuracy of all the measurements performed by the robots. The
effects of the number of robots, the initial uncertainty, and the network topology, become more evident in Section
3.2.4, where simulation results are presented.

3.2.3 Reconfigurations of the RPMG

The preceding analysis assumes that the topology of the graph describing the relative position measurements between
robots does not change. However, in a realistic scenario this may not be the case. In practice the topology of the
RPMG may change as the robots move in space (see also Section 3.4), and therefore the study of the effects of RPMG
reconfigurations on the positioning accuracy is of considerable interest.

In this section the following scenario is examined: At the initial stage of the deployment of a robotic team (Phase 1),
the RPMG has a topology A, e.g., the complete graph shown in Fig. 8(a), and retains this topology until time instantt1,
when it assumes a different topology B (Phase 2). This topology may be a connected one, e.g., the ring graph shown
in Fig. 8(b), or even an empty graph topology, i.e. the case in which all the robots localize independently. We will
show that consideration of both cases leads to the same result. Finally, at a second time instantt2, the RPMG assumes
the initial topology, A, once again (Phase 3). We assume that the time intervals(0, t1), (t1, t2) are of enough duration
in order for the transient phenomena in the time evolution of uncertainty to subside. For this scenario, the following
lemma applies:

Lemma 3.2 The steady state uncertainty of the robots after the RPMG has resumed its initial topology is identical to
the steady state uncertainty that would occur if no RPMG reconfigurations had taken place. This implies that these
reconfigurations inflict no loss of positioning accuracy at steady state.

Proof Assuming that the time interval(0, t1) is of enough duration for the steady state results to apply, at timet1 the
normalized covariance is given by Eq. (108) as:

Pn(t1) = UA

([
diagN−1

(
1

λAi

)
0(N−1)×1

01×(N−1) t1 + mNNA

])
UT

A (110)

where

mNNA = UT
NPn(0)

(
IN×N +

√
CAPn(0)

)−1

UN (111)

In the above relationsPn(0) is the initial normalized covariance, and the subscriptA has been appended to denote
quantities related to the RPMG topology A. SinceUN , the eigenvector ofC associated with the zero eigenvalue, is
independent of the topology of the RPMG, no additional subscript need be appended to it.

We first consider the case in which the RPMG assumes a connected topology B at timet1. At a later time instant
t2, after sufficient time has passed from the change of the RPMG topology, the normalized covariance matrix is given
by

Pn(t2) = UB

[
diagN−1

(
1

λBi

)
0(N−1)×1

01×(N−1) (t2 − t1) + mNNB

]
UT

B (112)

where

mNNB = UT
NPn(t1)

(
IN×N +

√
CBPn(t1)

)−1

UN (113)

In order to simplify the last expression, we first employ the matrix inversion lemma (Appendix H):

mNNB = UT
NPn(t1)

(
IN×N +

√
CBPn(t1)

)−1

UN

= UT
NPn(t1)

(
IN×N −

√
CB

(
IN×N + Pn(t1)

√
CB

)−1

Pn(t1)
)

UN

= UT
NPn(t1)UN − UT

NPn(t1)
√

CB

(
IN×N + Pn(t1)

√
CB

)−1

Pn(t1)UN
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and substitution from Eq. (110) yields:

mNNB
= UT

NUA

[
diagN−1

(
1

λAi

)
0(N−1)×1

01×(N−1) t1 + mNNA

]
UT

AUN −

− UT
NUA

[
diagN−1

(
1

λAi

)
0(N−1)×1

01×(N−1) t1 + mNNA

]
UT

A

√
CB

(
IN×N + Pn(t1)

√
CB

)−1

Pn(t1)UN

= [0 0 0 · · · 1]

[
diagN−1

(
1

λAi

)
0(N−1)×1

01×(N−1) t1 + mNNA

]
UT

AUN −

− [0 0 0 · · · 1]

[
diagN−1

(
1

λAi

)
0(N−1)×1

01×(N−1) t1 + mNNA

]
UT

A

√
CB

(
IN×N + Pn(t1)

√
CB

)−1

Pn(t1)UN

= (t1 + mNNA)[0 0 0 · · · 1]UT
AUN −

− (t1 + mNNA
)[0 0 0 · · · 1]UT

A

√
CB

(
IN×N + Pn(t1)

√
CB

)−1

Pn(t1)UN

= (t1 + mNNA
)UT

NUN − (t1 + mNNA
)UT

N

√
CB

(
IN×N + Pn(t1)

√
CB

)−1

Pn(t1)UN

= (t1 + mNNA
)− (t1 + mNNA

)UT
NUBΛ1/2

B UT
B

(
IN×N + Pn(t1)

√
CB

)−1

Pn(t1)UN

= (t1 + mNNA)− (t1 + mNNA)[0 0 0 · · · 1]Λ1/2
B UT

B

(
IN×N + Pn(t1)

√
CB

)−1

Pn(t1)UN

= (t1 + mNNA
) (114)

In the last line we have used the fact that the smallest eigenvalue ofCB is zero, and thus the product[0 0 0 · · · 1]Λ1/2
B

yields a zero1×N vector. Substitution in Eq. (112) yields the uncertainty for the robot team at timet2:

Pn(t2) = UB

[
diagN−1

(
1

λBi

)
0(N−1)×1

01×(N−1) t2 + mNNA

]
UT

B (115)

From the last expression we conclude that the steady state covariance term due to the initial uncertainty of the robots,
MNN , is equal tomNNA for both topologies A and B. At timet2 the RPMG assumes topology A again, and by
following the same steps, it is straightforward to show that the steady state normalized covariance matrix will be, in
analogy with Eq. (115),

Pn(t) = UA

[
diagN−1

(
1

λAi

)
0(N−1)×1

01×(N−1) t + mNNA

]
UT

A (116)

By comparison of the last expression with that in Eq. (110), we observe that the result is identical to the result that
would be derived if the RPMG had undergoneno reconfigurations. In the following we show that the same property
holds for the case in which during Phase 2, the robots localize independently, without performing relative position
measurements.

If no relative position information is utilized, then the Riccati equation describing the time evolution of covariance
is simply Ṗ = Q, or Ṗn = IN×N . Therefore, if the normalized covariance matrix at timet1 is given by Eq. (110),
then at timet2 we have

Pn(t2)′ = UA

([
diagN−1

(
1

λAi

)
0(N−1)×1

01×(N−1) t1 + mNNA

])
UT

A + (t2 − t1)IN×N

= UA

([
diagN−1

(
1

λAi

)
+ (t2 − t1) 0(N−1)×1

01×(N−1) t2 + mNNA

])
UT

A (117)

At time t2 the RMPG resumes topology A, and therefore at steady state, the normalized covariance matrix will be

Pn(t) = UA

([
diagN−1

(
1

λAi

)
0(N−1)×1

01×(N−1) (t− t2) + m′
NNA

])
UT

A (118)
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where

m′
NNA

= UT
NPn(t2)′

(
IN×N +

√
CAPn(t2)′

)−1

UN

= UT
NPn(t2)′

(
IN×N −

√
CA

(
IN×N + Pn(t2)′

√
CA

)−1

Pn(t2)′
)

UN

= UT
NPn(t2)′UN − UT

NPn(t2)′
√

CA

(
IN×N + Pn(t2)′

√
CA

)−1

Pn(t2)′UN

By comparison of the last result, wherePn(t2)′ is given in Eq. (117), with the expressions in Eqs. (114) and (112), it
becomes evident that following steps analogous to the derivation in Eq. (114) yields

m′
NNA

= t2 + mNNA (119)

and therefore, Eq. (118) becomes

Pn(t) = UA

([
diagN−1

(
1

λAi

)
0(N−1)×1

01×(N−1) t + mNNA

])
UT

A

which is identical to the expression in Eq. (116).

Clearly, the above results can be extended to the case of more than one intermediate phases of the RPMG topology.
The preceding analysis shows that when the relative position information available to the robots is temporarily reduced,
or even when relative measurements are not performed by any robot for a finite time interval, then after the initial
RPMG topology is restored, the accuracy of the position estimates for the robots will have sustainedno degradation.
Additionally, we observe that the steady state covariance term attributed to the initial uncertainty dependsonly on the
first topology of the RPMG, regardless of the subsequent topologies. This result implies that it is beneficial to employ
a dense RPMG topology during the initial stage of the deployment of a robot team. In this way the resultingmNN

term will be small, and this will benefit localization of the robots for any topology the RPMG assumes in later stages.

3.2.4 Simulation Results

In this section we present simulation results that validate the preceding theoretical analysis. Initially a heterogeneous
team of 5 robots moving in 1D is considered. The covariance of the measurements provided by the proprioceptive and
exteroceptive sensors of the robots,qi andri respectively, as well as the uncertainty about the initial positions of the
robots were assigned different values for each robot in the group. Fig. 1 presents the evolution of the covariance for
each of the five robots. It becomes clear that the rate of increase is the same forall robots in the team. After the initial
transient phase, the uncertainty of each robot grows linearly, with the constant offset for the uncertainty being larger
for robots that receive measurements of poor accuracy.

Fig. 2 shows the effect of different RPMG topologies on the steady state positional uncertainty of the robots. To
preserve figure clarity, a homogeneous robot group is considered in this case. The group consists of five robots, and the
plot shows the evolution of the uncertainty for four different RPMG topologies. In each of the RPMGs considered, each
robot of the group measures the relative position of a number of robots, and this number is the degree of connectivity
(d) for each node of the RPMG. In the plots shown in Fig. 2 this degree ranges from 1 to 4. We may observe that the
rate of increase of uncertainty isidentical for all RPMG topologies considered, even though these vary significantly,
from a ring graph (when thed = 1) to a fully connected graph (whend = 4). The only effect of RPMG topology is,
as evident from the figure, on the constant term of the steady state uncertainty.

In Fig. 3 the effect of the number of robots on the rate of uncertainty growth is presented. Robot groups of 1 (i.e. a
single robot performing Dead Reckoning) to 6 robots are considered, and the RPMG topology is fully connected, in all
cases. It is clear that an increase in the number of the robots that cooperate results in an improvement of the accuracy
of localization for all the robots. However, it should be noted that this improvement follows a law of diminishing
return, i.e. the gains from adding one robot to the group are less significant for large robot groups.

The last set of figures demonstrates the effects of RPMG reconfigurations. In Figs. 4(a) and 4(b) a heterogeneous
team of 5 robots is considered. Initially the robots perform cooperative localization with a fully connected RPMG
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Figure 1: True vs. theoretical covariance for a heterogeneous team of 5 robots. Solid lines correspond to the true, and
dashed lines to the theoretical uncertainty.
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Figure 2: True vs. theoretical covariance for a homogeneous robot group, and four different RPMG topologies.d
denotes the the degree of connectivity of each node of the graph.
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Figure 3: True vs. theoretical covariance for a homogeneous robot groups, of different sizes. The RPMG has been
considered fully connected for these simulations.
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(a) Ring intermediate topology
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(b) No relative position measurements recorded be-
tween 250sec and 500sec

Figure 4: The effects of RPMG reconfigurations for a heterogeneous team of 5 robots.

topology, att1 = 250sec the topology changes to a different one, and att2 = 500sec, the graph resumes its initial,
dense topology. The solid lines show the simulation results, while the dashed ones represent the theoretically computed
steady state covariance, evaluated for the first graph topology. The intermediate topology for Fig. 4(a) is a ring graph,
while in Fig. 4(b) in the time interval(t1, t2) no relative position measurements are recorded. For both of these cases,
we observe that the steady state covariance of the position estimates in the last phase is identical to the covariance
that would result, had no RPMG reconfigurations taken place. Thus the theoretical results of the previous section are
validated.

3.3 Cooperative Localization in 2D

We now turn our attention to the more practical case of mobile robots moving in two dimensions. The difference
compared to the one-dimensional case, presented in Section 3.2, is that the coefficients of the Riccati equation are now
time varying, and a closed form solution for the covariance cannot be obtained. We thus provide upper bounds for the
steady state uncertainty, in a manner analogous to the discrete-time case.

3.3.1 Position propagation

We first study the influx of uncertainty to the system, due to the motion of the robots. The continuous time kinematic
equations for theith robot of the team are

ẋi(t) = Vi(t) cos(φi(t)) (120)

ẏi(t) = Vi(t) sin(φi(t)) (121)

whereVi(t) andωi(t) are the linear and rotational velocity of the robot at timet. Using measurements from the robot’s
proprioceptive sensors, and the estimates for the robot’s orientation, we can write the following set of equations for
propagating the estimate of the robot’s position:

˙̂xi(t) = Vmi(t) cos(φ̂i(t))
˙̂yi(t) = Vmi(t) sin(φ̂i(t))

whereVmi(t) = Vi(t)−wVi(t) are the measurements of the translational velocity of the robot, contaminated by a white
zero-mean Gaussian noise process, whose covariance function isσ2

Vi
δ(t− τ). In the previous expressions,φ̂i(t) is the

estimate of the robot’s orientation at timet. The errors in the orientation estimates,φ̃i(t) = φi(t)− φ̂i(t) are modeled
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by a white zero-mean Gaussian noise process, whose variance,σ2
φi

= E{φ̃i

2} is bounded. The variance of the noise
in the velocity measurements, as well as in the orientation estimates, is determined as discussed in Section 3.1.

By linearizing Eqs. (120), (121), the position error propagation equations for the robot can be written as
[ ˙̃xi(t)

˙̃yi(t)

]
=

[
cos(φ̂i(t)) −Vmi(t) sin(φ̂i(t))
sin(φ̂i(t)) Vmi(t) cos(φ̂i(t))

] [
wVi(t)
φ̃i(t)

]

⇔ ˙̃
Xi(t) = Fi(t)X̃i(t) + Gci

(t)Wi(t) (122)

whereFi(t) = 02×2, and

Qci(t, τ) = E{Wi(t)WT
i (τ)} =

[
σ2

Vi
0

0 σ2
φi

]
δ(t− τ) (123)

is the covariance function of all sources of uncertainty, i.e., the errors in velocity measurements and the errors in the
orientation estimates. The matrixGci

Qci
GT

ci
that describes the influx of uncertainty to the system due to noise in the

robot’s odometry and orientation estimates, is given by

Gci
Qci

GT
ci

=


 σ2

V cos2(φ̂(t)) + σ2
φV 2

m(t) sin2(φ̂(t))
(
σ2

V − σ2
φV 2

m(t)
)

sin(φ̂(t)) cos(φ̂(t))(
σ2

V − σ2
φV 2

m(t)
)

sin(φ̂(t)) cos(φ̂(t)) σ2
V sin2(φ̂(t)) + σ2

φV 2
m(t) cos2(φ̂(t))




It becomes clear that this is a time varying matrix, depending on the robot’s velocity and orientation. Using this matrix
in the Riccati equation that describes the time evolution of the position uncertainty of roboti would preclude the
possibility of deriving a closed for solution for the covariance in the general case.

In the derivation of the upper bound for the uncertainty of the robots’ position estimates it is useful to employ the
average value of the matrix in Eq. (124) (cf. Section 3.3.3). This value is computed by averaging over all values of the
orientation of the robot, and is easily shown to be

Q̄i = E{GciQciG
T
ci
} =

σ2
Vi

+ σ2
φi

V 2

2
I2×2 = qiI2×2 (124)

When no relative positioning information is available the covariance of each robot is propagated using only odometric
information, and the covariance of theith robot is described by the Riccati equationṖi = GciQciG

T
ci

. It is easy to
verify that the trace ofGciQciG

T
ci

is equal to2qi, thustrace Ṗi = 2qi. Under the realistic assumption that on average
the covariance of the position estimates along the two coordinate axes is equal,P̄xxi(t) = P̄yyi(t), we can write

˙̄Pxxi(t) = ˙̄Pyyi(t) = qi (125)

i.e., uncertainty grows linearly with time at a rate ofqi (cf. Fig (7)). This rate depends on the accuracy of both the
odometry and the orientation estimates of the robot, as well as on its velocity. Eq. (125) shows that if the robots of the
team have different sensor noise characteristics, and they all localize independently, the rate of uncertainty increase for
each of them will differ. This result should be contrasted with the case in which the robots perform relative position
measurements, presented in Section 3.3.5.

3.3.2 Exteroceptive Measurement Model

The description of the exteroceptive measurement model is identical with the one presented in Section 2.2 for the
discrete-time case. The only difference is that the time-step arguments(k + 1) are now substituted by time arguments
(t), and the covariance matrices are evaluated using the variance computed for the equivalent system model, as ex-
plained in Section 3.1. Additionally, the upper bound,Ru, for the matrixRo(t) is identical to the one derived for the
discrete time, in Eq. (35). To avoid redundant derivations, we do not present the analysis here, and simply state the
final result. The quantity of interest for the continuous time analysis is the matrix expressing the total information
available to the estimator at each step, given by:

HT
(t)R−1

(t)H(t) =
N∑

i=1

HT
i (t)R−1

i (t)Hi(t)
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whereHT
i (t)R−1

i (t)Hi(t) is the information provided by the measurements performed by roboti. We haveHi(t) =
ΞT

φ̂i
(t)Hoi

, andRi(t) = Ξφ̂i
(t)Roi

(t)Ξφ̂i
(t) where all the quantities appearing in these expressions have been defined

in Section 2.2. We can thus write

HT
(t)R−1

(t)H(t) =
N∑

i=1

HT
i (t)R−1

i (t)Hi(t)

=
N∑

i=1

HT
oi
Ξφ̂i

(t)ΞT
φ̂i

(t)R−1
oi

(t)Ξφ̂i
(t)ΞT

φ̂i
(t)Hoi

=
N∑

i=1

HT
oi

R−1
oi

(t)Hoi
(126)

3.3.3 Bounds for the Uncertainty at Steady State

In this section we formulate the Riccati equation for the error state covariance of the robot team and outline the steps
that yield an upper bound for its solution. The error state vector for the entire robot team is defined as the stacked
vector containing the position error vectors of allN robots (cf. Eq. (122)), i.e. a vector of dimension2N . Since the
proprioceptive measurements of theN robots are uncorrelated, the matrixGT QG for the Riccati equation is

GT QG = Diag(GT
ci

Qci
Gci

) (127)

whereDiag(GT
ci

QciGci) is a block diagonal matrix, whose nonzero submatrices are the system noise covariances of
each of the robots of the team. Thus, noting that the state transition matrix in continuous time isF = 02N×2N , and
substituting from the previous expression and Eq. (126) into Eq. (87), yields the following Riccati equation for the
covariance of the position estimates:

Ṗ = Diag(GT
ci

(t)Qci (t)Gci (t))−P
∑

i

HT
oi

R−1
oi

(t)Hoi P (128)

It becomes clear that this is a matrix differential equation with time-varying coefficients, and thus a general closed
form solution to it cannot be derived. However, by employing the following lemma it is possible to derive an analytical
expression for an upper bound on the covariance.

Lemma 3.3 The maximum expected uncertainty for the position of a group of mobile robots performing Cooperative
Localization is bounded by the solution of the following constant coefficient Riccati equation

˙̄P = Q− P̄ HT
o R−1

u Ho P̄ (129)

whereQ = E{Diag(GT
ci

QciGci)} = Diag(qiI2×2) is the average rate of noise influx due to the odometric mea-
surements, andHT

o R−1
u Ho =

∑
i HT

oi
R−1

ui
Hoi .

Proof The proof of this lemma is straightforward, and follows from the fact thatRui º Roi . Specifically, we have
that

Roi ¹ Rui , i = 1..N ⇒∑

i

HT
oi

R−1
oi

Hoi º
∑

i

HT
oi

R−1
ui

Hoi ⇒

Diag(GT
ci

QciGci)−P HT
o Ro

−1Ho P ¹ Diag(GT
ci

QciGci)−P HT
o R−1

u HoP ⇒
E{Ṗ} ¹ E{Diag(GT

ci
QciGci)} − E{PHT

o R−1
u HoP}

¹ E{Diag(GT
ci

QciGci)} − E{P}HT
o R−1

u HoE{P}
⇒ E{Ṗ} ¹ Q− P̄HT

o R−1
u HoP̄ = ˙̄P

where we have employed Jensen’s inequality and the fact that the functionf(P) = PHT
o R−1

u HoP is matrix convex

in P [14]. By setting the right hand side argument of the expression in the last line equal to˙̄P, a Riccati equation in̄P
(Eq. (129)) is formed. SinceE{Ṗ} ¹ ˙̄P, by selecting the initial conditions for̄P equal to those forP, it is clear that
the solution to (Eq. (129)) is an upper bound for the expected positioning uncertainty of the robots.
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We point out that in Eq. (129) we have replaced the matrix representing the information of the exteroceptive
measurements with its lower bound,HT

o R−1
u Ho. This lower bound corresponds to the case of a time invariant system,

in which the exteroceptive measurements provide less (or equal) information than the information provided in the real
system of the robot team. Additionally, the covariance of the system noise in the time invariant system is equal to the
average covariance of the system noise in the real system. Therefore, the fact that the covariance of the estimates in
the time invariant system is an upper bound on the covariance of the position estimates for the robots makes sense
intuitively.

In order to solve the constant coefficient Riccati equation in Eq. (129), we first define the normalized covariance
matrix:

Pn(t) = Q−1/2P̄(t)Q−1/2

Substitution in Eq. (129) yields the Riccati equation for the normalized covariance:

Ṗn(t) = I2N×2N −Pn(t)Q1/2HT
o R−1

u HoQ1/2Pn(t) (130)

We defineC = Q1/2HT
o R−1

u HoQ1/2, and by substituting we have:

Ṗn(t) = I2N×2N −Pn(t)CPn(t) (131)

To solve this Riccati equation, we substitutePn(t) = A(t)B−1(t), and we form the Hamiltonian matrix of the
system,H2. The derivation is analogous to the one-dimensional case which we have already presented, and yields the
following solution forA(t), B(t):

[
B(t)
A(t)

]
= eH2t

[
B(0)
A(0)

]
(132)

where the Hamiltonian is given by

H2 =
[

02N×2N C
I2N×2N 02N×2N

]
(133)

Note the similarity of this system of equations with the system described by Eq.s (93) and (94). If we denote the
Singular Value Decomposition ofC by C = UΛUT it is evident that the solution forA(t) B(t) is given by

[
B(t)
A(t)

]
= eH2t

[
I2N×2N

Pn(0)

]
=

[
1
2Udiag

(
eλit + e−λit

)
UT + 1

2Udiag
(
λi(eλit − e−λit)

)
UT Pn(0)

1
2Udiag

(
eλit−e−λit

λi

)
UT + 1

2U diag
(
eλit + e−λit

)
UT Pn(0)

]

where thei-th eigenvalue of the symmetric matrixC has been denoted asλ2
i . In order to determine the covariance at

steady state, we follow a course analogous to that of the 1D case. From the above formula we derive the following
expression for the normalized covariance:

Pn(t) =
(

1
2
Udiag

(
eλit − e−λit

λi

)
UT +

1
2
Udiag

(
eλit + e−λit

)
UT Pn(0)

)
×

×
(

1
2
Udiag

(
eλit + e−λit

)
UT +

1
2
Udiag

(
λi(eλit − e−λit)

)
UT Pn(0)

)−1

= U
(

diag
(

eλit − e−λit

λi

)
+ diag

(
eλit + e−λit

)
UT Pn(0)U

)
×

× (
diag

(
eλit + e−λit

)
+ diag

(
λi(eλit − e−λit)

)
UT Pn(0)U

)−1
UT

= U(K + LP0)(L + ΛKP0)−1UT (134)

Where we have denoted

K = diag
(

eλit − e−λit

λi

)
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L = diag
(
eλit + e−λit

)

and
P0 = UT Pn(0)U

Note that in the definition ofK, a problem arises when none of the robots receives position measurements. In this
case, as shown in Appendix E.2, there exist two eigenvalues ofC equal to zero. However, analogously to the 1D case,
the quantity under consideration can be shown to exist, and equals

K =

[
diag2N−2

(
eλit−e−λit

λi

)
0(2N−2)×2)

02×(2N−2) 2t I2×2

]
(135)

In order to preserve the clarity of the formulas, we will use the initial, less strict notation in the following derivations,
bearing in mind that its true meaning is given by the last expression.

In the following, we determine bounds for the steady state uncertainty of the robots. This is accomplished by
examining the behavior of the solution for the covariance after sufficient time. Notice the similarity of Eqs. (134) and
(97). Applying analogous derivations, it is straightforward to show thatPn(t) can be written as:

Pn(t) = U
(
KL−1 + 4L−1P0

(
I2N×2N + ΛKL−1P0

)−1
L−1

)
UT (136)

The behavior of the steady state covariance of the robots’ position estimates depends on the availability of absolute
positioning information. When absolute position measurements are available, all the eigenvalues of matrixC are
positive, and the system of robots is observable from a Control Theoretic point of view. On the other hand, when
the robots perform only relative position measurements,C has two eigenvalues equal to zero, and the system is
unobservable (the proofs for the rank ofC can be found in Appendix E.2). The two cases are examined separately in
the following.

3.3.4 Observable System

If at least one of the robots receives absolute position measurements, all the eigenvalues ofC are positive, and thus:

lim
t→∞

KL−1 = lim
t→∞

diag
(

eλit − e−λit

λi

)
diag

(
eλit + e−λit

)−1

= diag
(

1
λi

)

Also

lim
t→∞

4L−1P0

(
I2N×2N + ΛKL−1P0

)−1
L−1 = 0N×NP0

(
I2N×2N + Λ1/2P0

)−1

0N×N

= 0N×N

Using the above two results, it is

lim
t→∞

Pn(t) = lim
t→∞

U
(
KL−1 + P0

(
I2N×2N + ΛKL−1P0

)−1
L−1

)
UT

= Udiag
(

1
λi

)
UT

and therefore the upper bound for the position estimates’ covariance at steady state is

P̄ss(t) = Q1/2Udiag
(

1
λi

)
UT Q1/2

= Q1/2
√

C−1Q1/2 (137)

Notice that the steady state uncertainty when at least one robot receives absolute position measurements is independent
of the initial uncertainty. This result should be compared with the result for the case of an non-observable system,
which we derive in the following.
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3.3.5 Non-Observable System

When none of the robots has access to absolute position measurements, the two smallest eigenvalues ofC are equal to
zero, i.e.,λ2N−1 = λ2N = 0. In this case,

KL−1 = diag
(

eλit − e−λit

λi

)
diag

(
eλit + e−λit

)−1

=

[
diag2N−2

(
eλit−e−λit

λi(eλit+e−λit)

)
0(2N−2)×2

02×(2N−2) 02×2

]
+

[
0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) tI2×2

]

But we note that

lim
t→∞

[
diag2N−2

(
eλit−e−λit

λi(eλit+e−λit)

)
0(2N−2)×2

02×(2N−2) 0

]
=

[
diag2N−2

(
1
λi

)
0(2N−2)×2

02×(2N−2) 02×2

]

and thus at steady state the termKL−1 becomes

(KL−1)ss =

[
diag2N−2

(
1
λi

)
0(2N−2)×2

02×(2N−2) tI2×2

]
(138)

Also,

lim
t→∞

4L−1P0

�
I2N×2N + ΛKL−1P0

�−1
L−1 =

lim
t→∞

4

"
diag2N−2

�
1

eλit+e−λit

�
0(2N−2)×2

02×(2N−2) 2I2×2

#
P0

�
I2N×2N + ΛKL−1P0

�−1

"
diag2N−2

�
1

eλit+e−λit

�
0(2N−2)×2

02×(2N−2) 2I2×2

#
=

�
0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) I2×2

�
P0

�
I2N×2N + Λ1/2P0

�−1
�

0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) I2×2

�
We denote

P0

(
I2N×2N + Λ1/2P0

)−1

=




m11 m12 ... m1(2N)

...
...

...
...

m(2N−1)1 m(2N−1)2 ... m(2N−1)2N

m(2N)1 m(2N)2 ... m(2N)(2N)




and thus

lim
t→∞

4L−1P0

(
I2N×2N + ΛKL−1P0

)−1
L−1 =

=
[

0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) I2×2

]



m11 m12 ... m2N

...
...

...
...

m(2N−1)1 m(2N−1)2 ... m(2N−1)2N

m(2N)1 m(2N)2 ... m(2N)(2N)




[
0)×(2N−2) 0(2N−2)×2

02×(2N−2) I2×2

]

=




0 0 ... 0
0 0 ... 0
...

... ...
...

m(2N−1)1 m(2N−1)2 ... m(2N−1)2N

m(2N)1 m(2N)2 ... m(2N)(2N)




[
0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) I2×2

]

=
[

0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) MN

]
(139)

where

MN =
[

m(2N−1)(2N−1) m(2N−1)(2N)

m(2N)(2N−1) m(2N)(2N)

]
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The derivation of a closed form expression forMN is analogous to the one-dimensional case presented in Section 3.2.2.
We recall thatP0 = UT Pn(0)U, thus

P0

(
I2N×2N + Λ1/2P0

)−1

= UT Pn(0)U
(
I2N×2N + Λ1/2UT Pn(0)U

)−1

= UT Pn(0)
(
UT

)−1
(
I2N×2N + Λ1/2UT Pn(0)U

)−1

(U)−1U

= UT Pn(0)
(
UUT + UΛ1/2UT Pn(0)UUT

)−1

U

= UT Pn(0)
(
I2N×2N +

√
CPn(0)

)−1

U

=
[

ΨT

V T

]
Pn(0)

(
I2N×2N +

√
CPn(0)

)−1 [
Ψ V

]

=




ΨT Pn(0)
(
I2N×2N +

√
CPn(0)

)−1

Ψ ΨT Pn(0)
(
I2N×2N +

√
CPn(0)

)−1

V

V T Pn(0)
(
I2N×2N +

√
CPn(0)

)−1

Ψ V T Pn(0)
(
I2N×2N +

√
CPn(0)

)−1

V




where we have denoted byΨ the matrix of dimensions2N × (2N − 2), consisting of the2N − 2 singular vectors
of C corresponding to the nonzero singular values, and byV the2N × 2 matrix consisting of the 2 singular vectors
corresponding to the two zero singular values, i.e.,U = [Ψ V ].

MN can now be written as

MN = V T Pn(0)
(
I2N×2N +

√
CPn(0)

)−1

V (140)

Using Eq. (136) steady state normalized covariance is thus obtained:

Pn(t) = U

([
diag2N−2

(
1
λi

)
0(2N−2)×2

02×(2N−2) tI2×2

]
+

[
0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) MN

])
UT

Thus the upper bound for the steady state uncertainty of the position estimates is

P̄(t) = Q1/2U

[
diag2N−2

(
1
λi

)
0(2N−2)×2

02×(2N−2) 02×2

]
UT Q1/2 +

+ Q1/2U
[

0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) MN

]
UT Q1/2

+ Q1/2U
[

0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) tI2×2

]
UT Q1/2

= P1 + P2 + P3(t) (141)

In the above relation, the termP1 is a constant term, that is independent of the initial uncertainty of the robots. The
termP2 can be written as

P2(t) = Q1/2U
[

0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) MN

]
UT Q1/2

= Q1/2
[

Ψ V
] [

0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) MN

] [
ΨT

V T

]
Q1/2

= Q1/2V V T Pn(0)
(
I2N×2N +

√
CPn(0)

)−1

V V T Q1/2 (142)

In Appendix E.2 we show that

V V T = U2N−1UT
2N−1 + U2NUT

2N = Q−1/2




qT 0 qT · · ·
0 qT 0 · · ·
qT 0 qT · · ·
...

...
...

.. .


Q−1/2 (143)
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whereU2N−1 andU2N are the eigenvectors associated with the zero eigenvalues ofC, and therefore

P2(t) = q2
T




1 0 1 · · ·
0 1 0 · · ·
1 0 1 · · ·
...

...
...

. ..


Q−1/2Pn(0)

(
I2N×2N +

√
CPn(0)

)−1

Q−1/2




1 0 1 · · ·
0 1 0 · · ·
1 0 1 · · ·
...

...
...

. ..


 (144)

where 1
qT

=
∑N

i=1
1
qi

.
From the above expression we can see that the value ofP2 is independent of the specific choice of the singular vectors.
In order to further simplify the expression forP2, and to reveal the special structure of this matrix, we choose for
simplicity the following singular vectors for the zero singular values:

U2N−1 =
√

qT Q−1/2




1
0
1
0
...




and

U2N =
√

qT Q−1/2




0
1
0
1
...




Using these we obtain

MN = V T Pn(0)
(
I2N×2N +

√
CPn(0)

)−1

V

= qT




0 1
1 0
0 1
0 0
...

...




T

Q−1/2Pn(0)
(
I2N×2N +

√
CPn(0)

)−1

Q−1/2




1 0
0 1
1 0
0 1
...

...




= qT




0 1
1 0
0 1
0 0
...

...




T

Q−1P(0)Q−1/2
(
I2N×2N +

√
CQ−1/2P(0)Q−1/2

)−1

Q−1/2




1 0
0 1
1 0
0 1
...

...




(145)

We introduce the notation

W = qT Q−1P(0)Q−1/2
(
I2N×2N +

√
CQ−1/2P(0)Q−1/2

)−1

Q−1/2

and we set

MN =
[

α β
γ δ

]
(146)

Due to the special structure ofV , α is the sum of all the elements ofW whose both indices are odd,δ is the sum of
all the elements with two even indices, andγ is the sum of all the elements with an odd row index and an even column
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index. Due to symmetry,β = γ. Using Eq. (141) we obtain

P2 = Q1/2U
[

0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) MN

]
UT Q1/2

=
[

Q1/2Ψ Q1/2V
] [

0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) MN

] [
(Q1/2Ψ)T

(Q1/2V )T

]

= qT




1 0
0 1

1√
qT

Q1/2Ψ 1 0
0 1
...

...







0(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2)

[
α β
γ δ

]






1√
qT

(Q1/2Ψ)T

1 0 1 0 1 · · ·
0 1 0 1 0 · · ·




= qT




α β
γ δ

02N×(2N−2) α β
γ δ
...

...







1√
qT

(Q1/2Ψ)T

1 0 1 0 1 · · ·
0 1 0 1 0 · · ·




= qT




α β α β · · ·
γ δ γ δ · · ·
α β α β · · ·
γ δ γ δ · · ·
...

...
...

...
. ..




= qT 1N×N ⊗MN (147)

Using analogous derivations, it is straightforward to show that

P3(t) = t qT




1 0 1 0 · · ·
0 1 0 1 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
...

...
...

...
. . .




= t qT 1N×N ⊗ I2×2 (148)

Using equations (147) and (148), the final expression for the maximum expected uncertainty at steady state becomes:

P̄ss(t) = Q1/2U

[
diag2N−2

(
1
λi

)
0(2N−2)×2

02×(2N−2) 02×2

]
UT Q1/2 + qT 1N×N ⊗MN + t qT 1N×N ⊗ I2×2(149)

Thus the following lemma has been proven:

Lemma 3.4 The maximum expected steady state uncertainty of a group of mobile robots performing cooperative
localization is given by:

P̄ss(t) = Q1/2U

[
diag2N−2

(
1
λi

)
0(2N−2)×2

02×(2N−2) 02×2

]
UT Q1/2 + qT 1N×N ⊗MN + t qT 1N×N ⊗ I2×2 (150)

where 1
qT

=
∑N

i=1
1
qi

,

MN =
[

α β
γ δ

]
(151)

and the parametersα, β, γ, δ are defined as follows: Let

W = [wij ] = qT Q−1P(0)Q−1/2
(
I2N×2N +

√
CQ−1/2P(0)Q−1/2

)−1

Q−1/2

Thenα =
∑

i,j odd wij is the sum of all elements ofW = [wij ] whose indices are both odd,δ =
∑

i,j even wij is the
sum of all elements with two even indices, andγ =

∑
i odd,j even wij is th sum of all elements with an odd row index

and an even column index. Due to symmetry,β = γ.
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The first term of the above equation is a constant term, whose value depends on the topology of the RPMG and the
characteristics of the sensors of the robots. The second term is a constant term that depends on the initial uncertainty,
as well as the characteristics of the robots and the RPMG topology. Finally, the last term contributes with a constant
rate of uncertainty increase that is proportional toqT . At this point we should note that the rate of uncertainty increase
is independentof the initial uncertainty P(0), the accuracy of the relative position measurements and the topology of
the RPMG. From the definition ofqT , it becomes clear that will it be smaller than the smallest of theqi’s (notice that
the definition ofqT is analogous to the expression for the resistance of resistors in parallel). This implies that it suffices
to equip onlyonerobot in the team with proprioceptive sensors of high accuracy, in order to achieve a desired rate of
uncertainty increase. All the robots of the group will experience an improvement in the rate at which their uncertainty
increases, and this improvement is more significant for robots with sensors of poor quality. We further discuss the
significance of Eq. (150) in the last section, where the results of our simulations are presented.

3.4 RPMG Reconfigurations

The preceding analysis assumes that the topology of the graph describing the relative position measurements between
robots does not change. However, this may be difficult to implement in a realistic scenario. For example, due to the
robots’ motion or due to obstacles in the environment, some robots may not be able to measure their relative positions.
Additionally, the robots should allocate computational and communication resources to mission-specific tasks, and
this may force them to reduce the number of measurements they process for localization purposes. Consequently, it is
of considerable interest to study the effects of changes in the topology of the RPMG on the positioning performance
of the team.

In this section we show that the same property that holds for the covariance of the position estimates in the 1D case
(Lemma 3.2) holds also for theupper boundof the covariance in the case of robots performing cooperative localization
in 2D. The derivations are analogous, with only minor modifications, to account for the fact that in the 2D case, the
expressions provide an upper bound on the expected covariance, rather than an exact solution.

The following scenario is examined: At the initial stage of the deployment of a robotic team (Phase 1), the RPMG
has a topology A, e.g., the complete graph shown in Fig. 8(a), and retains this topology until time instantt1, when it
assumes a different topology B, e.g., the ring graph shown in Fig. 8(b). We refer to the time interval during which
the RPMG has topology B as Phase 2. Finally, at a second time instantt2, the RPMG assumes the initial topol-
ogy, A, once again (Phase 3). We assume that the time intervals(0, t1), (t1, t2) are of enough duration in order for
the transient phenomena in the time evolution of uncertainty to subside. For this scenario, the following lemma applies:

Lemma 3.5 The maximum expected steady state covariance of the robots during Phase 3 isidenticalto the maximum
expected uncertainty the robot team would have if no RPMG reconfigurations had taken place. This result holds also
for the case that during Phase 2 the robots perform DR (i.e., the RPMG is anempty graph).

Proof We start the proof by noting that at timet1 the normalized covariance will be

PnA
(t1) = UA

[
diag2N−2

(
1

λAi

)
0(2N−2)×2

02×(2N−2) t1I2×2 + MA

]
UT

A (152)

where

MA = V T Pn(0)
(
I2N×2N +

√
CAPn(0)

)−1

V

and the subscriptA has been appended to quantities that depend on the topology A.
At time t1 the topology of the RPMG changes, and in order to compute the steady state covariance during the

Phase 2, the covariance of the position estimates at timet1 is required. If during Phase 2 the robots perform Dead
Reckoning, then at timet2 their normalized covariance will be

PnB (t2) = UA

[
diag2N−2

(
1

λAi

)
+ (t2 − t1)I(2N−2)×(2N−2) 0(2N−2)×2

02×(2N−2) t2I2×2 + MA

]
UT

A (153)
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while if the RPMG topology during phase 2 is a connected one, at timet2 we have

PnB
(t) = UB

[
diag2N−2

(
1

λBi

)
0(2N−2)×2

02×(2N−2) (t− t1)I2×2 + MB

]
UT

B (154)

where

MB = V T Pn(t1)
(
I2N×2N +

√
CBPn(t1)

)−1

V (155)

and the subscriptB denotes quantities associated with RPMG topology B. At this point we note that for computing the
value ofMB , theexactvalue of the covariance at timet1, would have to be employed. However,Pn(t1) is provides
(after pre- and post multiplication withQ1/2) an upper bound on this covariance value. This is not a problem, since in
Appendix I it is shown thatMB is a matrix increasing function ofPn(t1), i.e.,

P′n º Pn ⇒ M ′
B º MB (156)

Therefore, by employing the upper bound of the covariance att1, the resulting expression remains an upper bound
of the covariance during Phase 2. Thus, we are able to use the preceding expression in the derivations, since we
only seek an upper bound of the steady state covariance during Phase 3. This is the only difference in the proof of
Lemma 3.5, compared to Lemma 3.2. By comparison of the expressions in Eqs. (152)-(155) with those presented in
Section 3.2.3, it becomes clear that by following derivations analogous to those for the 1D case the proof of Lemma 3.5
is straightforward.

This result is of great practical significance, and shows that if the robots of a team are forced to perform a small number
of measurements (or even resort to mere DR) during a stage of their mission, due to communication or sensor failure,
or in order allocate CPU and bandwidth resources to different tasks, then upon reverting to the initial RPMG topology,
the team’s positioning performance will have sustainedno degradation. Additionally, it shows that it is beneficial
to choose a dense topology for the RPMG during the initial phase of the deployment of a robot team. This may be
possible for example, if during this initial phase the robots do not perform any other time-critical tasks, and are able
to allocate a large proportion of the team’s resources for localization purposes. As the robots start performing other
tasks the RPMG topology may have to be reduced to a sparser one, in order to save computational and communication
resources. However if, at a subsequent time instant, the RPMG resumes the initial, dense topology, the above lemma
guarantees that the maximum expected uncertainty will beidentical to the one that would arise if the dense RPMG
topology were retained throughout the run of the robots. We remind that Lemma 3.5 holds under the assumption that
the RPMG remains in each topology for sufficient time in order for the transient phenomena to die out.

3.5 Simulation Results

A series of experiments in simulation were conducted, with the aim of validating the preceding theoretical analy-
sis. Robotic teams of different sizes and several topologies of the RPMG are considered, and the covariance values
predicted by our theoretical analysis are compared to the experimental results. For the simulations the same two-
layer approach to the estimation of the robot’s pose is employed, that was used in the derivation of the theoretical
bounds. For our experiments, the robots are restricted to move in an area of radiusr = 20m, thus the maximum
allowable distance between any two robots isρo = 40m. The velocity of all robots is assumed to be constant, equal
to Vi = 0.25m/sec. Note however, that our analysis does not require all the robots to move at the same speed. The
orientation of the robots, while they move, changes randomly using samples drawn from a uniform distribution.

The parameters of the noise that corrupts the proprioceptive measurements of the simulated robots are identical
to those measured on a iRobot PackBot robot (σV = 0.0125m/sec,σω = 0.0384rad/sec). The absolute orientation
of each robot was measured by a simulated compass withσφ = 0.0524rad. The robot tracker sensor returned range
and bearing measurements corrupted by zero-mean white Gaussian noise withσρ = 0.01m andσθ = 0.0349rad. The
above values are compatible with noise parameters observed in laboratory experiments [15]. All measurements were
available at 1Hz.

In order to demonstrate the validity of the derived formulas for the steady state localization uncertainty of the
robots, in Fig. 5 we plot the true value vs. the theoretical bound for the covariance along thex-axis of two robots
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performing cooperative localization. For this specific experiment the parameters for the proprioceptive sensors of
the robots were chosen so that one of the robots has 5 times less accurate measurements (i.e, for this robotσV =
0.0625m/sec,σω = 0.192rad/sec). As evident, the true covariance consistently remains below the maximum expected
value predicted by the theoretical analysis. This behavior for the localization uncertainty is a typical example of the
results of our simulation experiments. In order to preserve the clarity of the figures in the following, a homogeneous
robot team (i.e. a team whose robots are equipped with sensors of equal accuracy) is considered for the rest of the
simulations. Note however, that homogeneity is not a prerequisite of our approach, as Fig. 5 demonstrates.

In Fig. 6 the theoretical upper bound for the expected localization uncertainty is compared with the true covariance
provided by the simulations. Robotic teams consisting of 3, 5, 7 and 9 robots are considered, and in each plot, the
theoretical bound as well as the true covariance for a fully connected RPMG and a ring RPMG are presented. In each
plot, the true covariance is the average covariance over 20 runs of the simulation experiments. It becomes evident that
the theoretical bound for therateof uncertainty increase is quite tight, especially as the size of the team increases. We
may also note that for the two radically different RPMGs considered (i.e a fully connected vs. a ring graph) the rate of
uncertainty increase is identical, thus validating what was predicted theoretically. From comparison of the four plots
in Fig. 6 we observe that for small teams, the difference in the localization uncertainty for two RPMG topologies is
almost negligible. This implies that the performance improvement from employing a fully connected graph for the
relative position measurements (and thus using up computational resources and communication bandwidth) are very
small for small groups of robots, and the use of a sparser graph, (allowing for the allocation of computational and
communication resources to other tasks) is favored.

In Fig. 7 the localization uncertainty evolution is presented for a team of 9 robots with changing RPMG topology.
Initially, and up tot = 200sec the robots do not record any relative position measurements, and propagate their
position estimates using Dead Reckoning (DR). Att = 200sec the robots start receiving relative measurements, and
the topology of the RPMG is a fully connected one (Fig. 8(a)). The significant improvement in the rate of uncertainty
increase that is achieved by using relative positioning information is demonstrated in this transition. Att = 600sec
the RPMG assumes a ring topology (Fig. 8(b)). We note that the uncertainty undergoes a transient phase, during
which it increases at a higher rate, and then, as soon as steady state is reached, the rate of increase is identical with the
rate associated with the fully connected graph. This validates the result of Eq. (150), and shows that the dominant
factor in determining the localization uncertainty for a team of robots is the quality of their proprioceptive sensors.
At t = 600sec a supposed failure of the communication network occurs, and in the time interval between600sec and
800sec only two robots are able to measure their relative position, (Fig. 8(c)). This case can be viewed as a degenerate
case, where the 7 robots localize based solely on Dead Reckoning, while the other two robots form the team. We can
observe that the rate of increase of the covariance is larger when the team consists of only two robots, instead of nine.
At t = 800sec the RPMG assumes a non-canonical topology, i.e., random graph (Fig. 8(d)). This case is perhaps
the most important for real applications, since robots will usually measure the distances of their neighbors, and due to
the robots’ motion, the topology of the RPMG can change randomly. In this case, the uncertainty increases at a rate
identical to that of cases I and II of the graph’s topology, as predicted by our theoretical analysis. It is also apparent,
that the uncertainty for each robot converges to a set of lines with the same slope (rate of uncertainty increase), but
different constant offset. This is due to the effect of the different degree of connectivity in the RPMG of each robot.
Connection-rich robots have access to a higher rate of positioning information flow, and thus attain lower positioning
uncertainty.

At t = 1000sec only one of the robots starts receiving GPS measurements while the RPMG retains the topology of
(Fig. 8(d)) The GPS measurements are corrupted by noise with a standard deviation ofσGPS = 0.05m in each axis.
It is evident that the availability of absolute position measurements toany robot drastically reduces the localization
uncertainty forall the robots in the group. Furthermore, the system becomes observable and the uncertainty is bounded
for all robots in the group. As in the previous case, the constant value at which the uncertainty for each robot converges
to depends on its degree of connectivity.
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Figure 5: True covariance Vs. theoretical bound for a heterogeneous team of 2 robots.
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Figure 6: True covariance vs. theoretical bound for homogeneous teams of robots. The plots correspond to fully
connected and ring RPMGs.
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Figure 7: Uncertainty evolution for a RPMG with changing topology.
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Figure 8: The four different measurement graph topologies considered in the simulations. Each arrow represents a
relative position measurement, with the robot (node) where the arrow starts being the observing robot.
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A Upper Bound Riccati Recursion

In this appendix we prove that ifRu º Ro(k) andQu º Q(k) for all k ≥ 0, then the solutions to the following two
Riccati recursions

Pk+1 = Pk −PkHT
o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk + Q(k + 1) (157)

and

Pu
k+1 = Pu

k −Pu
kH

T
o

(
HoPu

kH
T
o + Ru

)−1
HoPu

k + Qu (158)

with thesameinitial condition,P0, satisfyPu
k º Pk for all k ≥ 0. The proof is carried out by induction, and requires

the following two intermediate results:

• Monotonicity with respect to the measurement covariance matrix

If R1 º R2, then for anyP º 0

P−PHT
(
HPHT + R1

)−1
HP + Qo º P−PHT

(
HPHT + R2

)−1
HP + Qo (159)

This statement is proven by taking into account the properties of linear matrix inequalities:

R1 º R2 ⇒
HPHT + R1 º HPHT + R2 ⇒(

HPHT + R1

)−1 ¹ (
HPHT + R2

)−1 ⇒
PHT

(
HPHT + R1

)−1
HP ¹ PHT

(
HPHT + R2

)−1
HP ⇒

−PHT
(
HPHT + R1

)−1
HP º −PHT

(
HPHT + R2

)−1
HP ⇒

P−PHT
(
HPHT + R1

)−1
HP + Qo º P−PHT

(
HPHT + R2

)−1
HP + Qo

• Monotonicity with respect to the state covariance matrix

The solution to the Riccati recursion at timek + 1 is monotonic with to the solution at timek, i.e., if P(1)
k and

P(2)
k are two different solutions to the same Riccati recursion at timek, with P(1)

k º P(2)
k thenP(1)

k+1 º P(2)
k+1. In

order to prove the result in the general case, in whichP(1)
k andP(2)

k are positive semidefinite, we use the following
expression that relates the one-step ahead solutions to two Riccati recursions with identicalH, Q andR matrices, but
different initial valuesP(1)

k andP(2)
k ([11]). It is

P(2)
k+1 −P(1)

k+1 = Fp,k

((
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

))
FT

p,k (160)

whereFp,k is a matrix whose exact structure is not important for the purposes of this proof. Since we have assumed

P(1)
k º P(2)

k we can writeP(2)
k −P(1)

k ¹ 0. Additionally, the matrix
(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)

is positive semidefinite, and therefore we have

−
(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)
¹ 0 ⇒

(
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)
¹ 0 ⇒

Fp,k

((
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

))
FT

p,k ¹ 0 ⇒
P(2)

k+1 −P(1)
k+1 ¹ 0
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The last line implies thatP(1)
k+1 º P(2)

k+1, which is the desired result.

We can now employ induction to prove the main statement of this appendix. Assuming that at some time instanti,
Pu

i º Pi, we can write

Pu
i+1 = Pu

i −Pu
i H

T
o

(
HoPu

i H
T
o + Ru

)−1
HoPu

i + Qu

º Pi −PiHT
o

(
HoPiHT

o + Ru

)−1
HoPi + Qu

º Pi −PiHT
o

(
HoPiHT

o + Ru

)−1
HoPi + Q(k + 1)

º Pi −PiHT
o

(
HoPiHT

o + Ro(k + 1)
)−1

HoPi + Q(k + 1) = Pi+1

where the monotonicity of the Riccati recursion with respect to the covariance matrix, the propertyQu º Q(k + 1)

and the monotonicity of the Riccati recursion with respect to the measurement covariance matrix have been used in the
last three lines. ThusPu

i º Pi ⇒ Pu
i+1 º Pi+1. For i = 0 the conditionPu

i º Pi holds with equality, and therefore
for any i > 0, the solution to the Riccati recursion in Eq. (157) is an upper bound to the solution of the recursion in
Eq. (158).

B Riccati Recursion for the Upper Bound on the Average Covariance

In this appendix we prove that if̄R andQ̄ are matrices such that̄R = E{Ro(k)} andQ̄ = {Q(k)} for all k ≥ 0, then
the solutions to the following two Riccati recursions

Pk+1 = Pk −PkHT
o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk + Q(k + 1) (161)

and

P̄k+1 = P̄k − P̄kHT
o

(
HoP̄kHT

o + R̄
)−1

HoP̄k + Q̄ (162)

with thesameinitial condition,P0, satisfyP̄k º E{Pk} for all k ≥ 0. We first prove a useful intermediate result:

• Concavity of the Riccati recursion

We note that the Riccati recursion

Pk+1 = Pk − PkHT
(
HPkHT + Rk+1

)−1
HPk + Qk+1 (163)

can equivalently be written as

Pk+1 =
[

I 0
] [

Pk 0
0 Rk+1

] [
I
0

]

− [
I 0

] [
Pk 0
0 Rk+1

] [
HT

0

]([
H I

] [
Pk 0
0 Rk+1

] [
HT

I

])−1 [
H 0

] [
Pk 0
0 Rk+1

] [
I
0

]

+ Qk+1

our goal is to show that the above expression is concave with respect to the matrix
[

Pk 0
0 Rk+1

]

A sufficient condition for this is that the function

f(X) = AXB
(
CXCT

)−1
BT XAT (164)
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is convex with respect to the positive semidefinite matrixX, whenA,B,C are arbitrary matrices of compatible dimen-
sions. This is equivalent to proving the convexity of the function of the scalar variablet

ft(t) = A(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)AT (165)

with domain those values oft for whichXo + tZo º 0, Xo º 0 is convex [14].ft(t) is convex if and only if the scalar
function

ft(t) = zT A(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)AT z (166)

is convex for any vectorz of appropriate dimensions [14]. Moreover, it is well known that a function is convex if and
only if its epigraph is a convex set, and therefore we obtain the following convexity condition forf(X):

f(X) convex ⇔ {s, t|zT A(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)AT z ≤ s} is convex

However, from the properties of Schur complements it is well known that ifAo Â 0 then
[

Ao Bo

BT
o Co

]
º 0 ⇔ Co −BT

o C−1
o B º 0

In our problem, the matrixC(Xo + tZo)CT is clearly positive definite, and thus we can write

zT A(Xo+tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo+tZo)AT z ≤ s ⇔

[
C(Xo + tZo)CT BT (Xo + tZo)AT z
zT A(Xo + tZo)B s

]
º 0

However, the defining matrix inequality of the epigraph is equivalent to
[

CXoC
T BT XoA

T z
zT AXoB 0

]
+ t

[
CZoC

T BT ZoA
T z

zT AZoB 0

]
+ s

[
0 0
0 1

]
º 0

which defines a convex set in(s, t) [14].
Thus, by the preceding analysisf(X) is a convex function, and consequentlyPk+1 is a concave function of the

matrix [
Pk 0
0 Rk+1

]

We now employ this result to prove the main result of this appendix. The proof is carried out by induction. Assuming
that at time stepk the inequalityP̄k º E{Pk} holds, we will show that it also holds for the time stepk + 1. We have

Pk+1 = Pk −PkHT
o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk + Q(k + 1) ⇒
E{Pk+1} = E{Pk −PkHT

o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk + Q(k + 1)}
= E{Pk −PkHT

o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk}+ E{Q(k + 1)}
¹ E{Pk} − E{Pk}HT

o

(
HoE{Pk}HT

o + E{Ro(k + 1)})−1
HoE{Pk}+ E{Q(k + 1)}

where in the last line the concavity of Jensen’s inequality was applied [14], in order to exploit tht concavity of the
Riccati. By assumption,̄Pk º E{Pk} and employing the property of the monotonicity of the Riccati with respect to
the covariance matrix (cf. Appendix A), we can write

E{Pk+1} ¹ P̄k − P̄kHT
o

(
HoP̄kHT

o + E{Ro(k + 1)})−1
HoP̄k + E{Q(k + 1)}

= P̄k − P̄kHT
o

(
HoP̄kHT

o + R̄})−1
HoP̄k + Q̄

= P̄k+1

Thus,P̄k º E{Pk} ⇒ P̄k+1 º E{Pk+1}. Fork = 0 the conditionP̄k º E{Pk} holds with equality, and the proof
is complete.
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C Continuous Time Riccati Equation

For a linear continuous time system, where the state measurements are available continuously, the state model equa-
tions are

ẋ(t) = F (t)x(t) + B(t)u(t) + G(t)w(t) (167)

z(t) = H(t)x(t) + n(t) (168)

whereu(t) is the input to the system,w(t) is the dynamic driving noise process having covarianceQ(t), n(t) is the
measurement noise process, with covarianceR(t), F (t) is the matrix describing the dynamic behavior of the states,
B(t) is the matrix describing the affect of the inputs on the states, andH(t) is the measurement matrix.

The continuous time Riccati equation, describing the evolution of the state covariance is

Ṗ = FP + PFT + GQGT − PHT R−1HP (169)

where the time indices have been dropped for simplicity.

D Appendix: Taylor Series Expansion of the Hyperbolic Sine and Cosine
Functions

The Taylor series expansion of the exponential function is given by:

eat = Σ∞k=0

aktk

k!
= 1 +

at

1!
+

a2t2

2!
+

a3t3

3!
+

a4t4

4!
+ · · ·

The above relation, when substituting−t instead oft yields:

e−at = Σ∞k=0

ak(−t)k

k!
= 1− at

1!
+

a2t2

2!
− a3t3

3!
+

a4t4

4!
− · · ·

Thus, by subtracting and adding the previous two relations, we get:

eat + e−at

2
= 1 +

1
2!

a2t2 +
1
4!

a4t4 + · · ·

and
eat − e−at

2
=

1
1!

at +
1
3!

a3t3 +
1
5!

a5t5 + · · ·
The last two functions are the hyperbolic cosine and sine respectively.

E Rank and Nullspace of the Measurement Matrices

In this appendix we present some results concerning the rank of the measurement matrices in CL, as well as the rank
and eigenvectors of the matrix:

Cs = Q1/2
s HT

o R−1
s HoQ1/2

s

Where the matricesQ1/2
s andRs can be substituted for either by the upper bounds, or by the average values of the

corresponding covariance matrices.
We first note that,in the case in which the robots receive only relative position measurements,Ho consists of block

rows of the form
[

02×2 .. −I2×2 .. I2×2 .. 02×2

]
=

[
0 .. −1 .. 1 .. 0

]⊗ I2×2

while if the some of the robots additionally receive absolute position measurements,Ho also has some block rows of
the form

[
02×2 .. I2×2 .. 02×2

]
=

[
0 .. 1 .. 0

]⊗ I2×2
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We therefore conclude, that in any case, the matrixHo can be expressed as

Ho = H ⊗ I2×2 (170)

whereH is an appropriate matrix, consisting of rows having one of the two following structures:

Hij =
[

0 .. −1 .. 1 .. 0
]

or
H` =

[
0 .. 1 .. 0

]

It becomes clear that the matrixH will be the measurement matrix associated with a 1D CL system model, in which
the robot team has the same RPMG as the team of robots performing localization in 2D (cf. Section 3.2).

Employing the properties of the Kronecker product, from Eq. (170) we conclude that

rank(Ho) = rank(H) rank(I2×2) = 2 · rank(H) (171)

and therefore we can determine the rank ofHo by first studying the properties of the 1D-measurement matrixH. For
this reason, we start by presenting the results for the, simpler, one-dimensional CL case (cf. Section 3.2).

E.1 Cooperative Localization in 1D

For the one-dimensional case, when no absolute position measurements are available, the measurement matrixH is
defined by

H =




Hij

...
Hkl

...
Hmn




(172)

where each row ofH corresponds to one relative position measurement, or equivalently, to one edge of the RPMG.
Each of the rows contains a “-1”, at the column that corresponds to the roboti registering the relative position measure-
ment, and a “1” at the column that corresponds to the robot being observed. This matrix is identical to theincidence
matrixdefined for any directed graph. In [16] it is shown that the incidence matrix of a directed graph is of rankN−1,
whenever the graph is connected, and therefore the rank ofH is N − 1, where we have imposed the constraint that the
measurement graph is connected4.

Having determined the rank ofH, we are now able to study the rank and eigenvectors of the matrix

C = Q1/2HT R−1HQ1/2

whereQ andR are diagonal and positive definite. In order to determine the rank of this matrix, we use the following
lemma from linear algebra [16]:

Lemma E.1 The rank of the product of two matricesA, B is given by

rank(AB) = rank(B)− dim
(
N(A)

⋂
R(B)

)
(173)

wheredim X
⋂

Y denotes the dimension of the subspace formed by the intersection of the subspacesX andY , N(A)
is the nullspace of matrixA, andR(B) is the range ofB.

Note that the matrix productHT R−1H can be written asHT R−1/2R−1/2H = (R−1/2H)T R−1/2H. We now
apply the above lemma to the matrix productM = R−1/2H. SinceR−1/2 is an invertible matrix, its nullspace is
of dimension 0, and we haverank(M) = rank(R−1/2H) = rank(H) = N − 1. Moreover, it is evident that the

4This is not a restraining assumption. The case in which the RPMG is not connected is a degenerate one. In this case, the robots that are not
connected by an edge to any robot of the team, do not actually belong to the team, and therefore, we can study this case by a considering each
connected subgraph independently.
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nullspace ofM will be the same with the nullspace ofH. In order to find the rank ofHT R−1H = MT M we employ
the above lemma once again:

rank(HT R−1H) = rank(MT M) = rank(M)− dim
(
N(M)

⋂
R(M)

)

Since the nullspace and the range of any matrix are disjoint sets,rank(HT R−1H) = N − 1. By consecutive appli-
cation of the above lemma to the matrix products(HT R−1H)Q1/2 andQ1/2(HT R−1HQ1/2) it is easy to show that
rank(C) = N − 1.

A direct consequence of this result is thatC has one eigenvalue equal to zero, and that its nullspace is of dimension
1. Note that since the sum of all elements of the rows ofH is zero, we obtain

H1N×1 = 0N×1

hence the basis of the nullspace ofH is the vectorxN = 1N×1. As a result, we deduce that the basis vector for the
nullspace ofC is given by

UN =
1

||Q−1/21N×1||
Q−1/21N×1

since

CUN =
1

||Q−1/21N×1||
Q1/2HT R−1HQ1/2Q−1/21N×1 =

1
||Q−1/21N×1||

Q1/2HT R−1 (H1N×1) = 0N×1

Simpe calculations show that

UN =
1

||Q−1/21N×1||
Q−1/21N×1 =

1
(∑N

i=1
1
qi

)1/2
Q−1/21N×1 =

√
qtotal Q−1/21N×1

where
1

qtotal
=

N∑

i=1

1
qi

Finally, by applying simple vector-matrix multiplication, we obtain the following result, which is useful in the deriva-
tions in Section 3.2:

Q1/2UNUT
NQ1/2 = qtotal1N×N (174)

If in addition to the relative position measurements, some of the robots receive absolute positioning information, then
the measurement matrix has a number of rows (at least one) of the formHiA = [0 .. 1 .. 0], with the “1”s being at
the columns corresponding to the robots receiving absolute positioning information. In this caseC can be written as

C = Q1/2

(
HT R−1H +

∑

k

1
σ2

A

HT
kA

HkA

)
Q1/2 = C + Q1/2

∑

k

1
σ2

Ak

HT
kA

HkA
Q1/2 = C + CA (175)

where the sum is over all robots receiving absolute position measurements,σ2
Ak

are the variances of these measure-
ments, andC is the matrix of the previous case, in which only relative position information were available.

We now prove thatC is positive definite, by showing thatxT Cx = 0 ⇔ x = 0 . Assume that there exists a vector
x such that

xT Cx = 0 ⇒ xT Cx + xT CAx = 0

Clearly, both terms in the last expression are always nonnegative, since the involved matrices are positive semidefinite.
ThusxT Cx = 0 impliesxT Cx = xT CAx = 0. The termxT Cx assumes the zero value only whenx = aUN , where
a ∈ R andUN is the basis vector of the nullspace ofC. But

a2UT
N

(
Q1/2

∑

k

1
σ2

Ak

HT
kA

HkA
Q1/2

)
UN = a2qtotal

∑

k

1
σ2

Ak

and therefore this quantity is equal to zero only whena = 0. ThusxT Cx = 0 ⇒ x = 0, which implies that when at
least one robot has access to absolute position information,C is positive definite.
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E.2 Cooperative Localization in 2D

We can now employ the results of the preceding 1D analysis to the 2D case. Using the result of Eq. (171), we
immediately see that when the robots of the a team performing CL in 2D only record relative position measurements,
thenrank(Ho) = 2N − 2, while if at least one of the robots has access to absolute position measurements, we have
rank(Ho) = 2N .

Regarding the rank and eigenvectors ofCs, it is straightforward to see that

rank(Ho) = 2N ⇒ rank(Cs) = 2N

since in this caseCs is the product of full-rank matrices. Similarly, we can use Lemma E.1 in the same way as in the
1D case, to show thatrank(Cs) = 2N − 2. As a result, the nullspace ofCs is of dimension 2, and is spanned by 2
orthogonal basis vectors. We can find two such vectors by observing that

Cs

(
Q−1/2

s 1N×1 ⊗ I2×2

)
= Q1/2

s HT
o R−1

s HoQ1/2
s

(
Q−1/2

s 1N×1 ⊗ I2×2

)

= Q1/2
s HT

o R−1
s Ho (1N×1 ⊗ I2×2)

= Q1/2
s HT

o R−1
s (H ⊗ I2×2) (1N×1 ⊗ I2×2)

But employing the properties of the Kronecker product yields

(H ⊗ I2×2) (1N×1 ⊗ I2×2) = (H1N×1)⊗ I2×2 = 02N×2

and therefore
Cs

(
Q−1/2

s 1N×1 ⊗ I2×2

)
= 02N×2

The columns of the matrixQ−1/2
s 1N×1 ⊗ I2×2 are

c1 = Q−1/2
s




1
0
1
0
...




and

c1 = Q−1/2
s




0
1
0
1
...




which are orthogonal (this is easily verified by computing the dot productcT
1 c2). Therefore, a basis for the nullspace

of Cs is given by the vectors

U2N−1 =
c1

||c1|| =
√

qsT
Q−1/2

s




1
0
1
0
...




(176)

and

U2N =
c2

||c2|| =
√

qsT Q−1/2
s




0
1
0
1
...




(177)

TR-2003-0002 57



where, under the assumption thatQs is diagonal with diagonal elementsqsi
(which holds for all the cases of interest

in this work),qsT
is defined by the relation

1
qsT

=
N∑

i=1

1
qsi

F On the Use of the Zero Eigenvalue

In Eq. (95) the inverse of the diagonal matrix of the eigenvalues ofC appears, which, in the case of an non-observable
system, does not exist, since the smallest eigenvalue is zero. Although this is wrong from a strict mathematical point
of view, we argue here that this notation can be justified. In order to compute the submatrix element (2,1) ofeHt we
have:

eHt(2, 1) = tIN×N + C
t3

3!
+ C2 t5

5!
+ · · ·

= tIN×N + UΛUT t3

3!
+ UΛ2UT t5

5!
+ · · ·

= U(tIN×N + Λ
t3

3!
+ Λ2 t5

5!
+ · · · )UT (178)

The derivative with respect to time of the above expression is:

(
eHt(2, 1)

)
= IN×N + C

t2

2!
+ C2 t4

4!
+ · · ·

= tIN×N + UΛUT t2

2!
+ UΛ2UT t4

4!
+ · · ·

= U(tIN×N + Λ
t2

2!
+ Λ2 t4

4!
+ · · · )UT

=
1
2
U diag(eλit + e−λit)UT

=
1
2
U

[
diagN−1(eλit + e−λit) 01×(N−1)

0(N−1)×1 2

]
UT

In the last line, we have simply written out the diagonal matrix, in order to underline the fact that the last element is a
constant. Integration of the above relation yields:

eHt(2, 1) =
1
2
U

[
diagN−1

(
eλit−e−λit

λi

)
01×(N−1)

0(N−1)×1 2t

]
UT + c

wherec is a constant matrix term resulting from the integration operation. In order to evaluate this constant term, we
note from Eq. (178) thateH0(2, 1) = 0, thus substitution in the above relation yieldsc = 0, and therefore

eHt(2, 1) =
1
2
U

[
diagN−1

(
eλit−e−λit

λi

)
01×(N−1)

0(N−1)×1 2t

]
UT (179)

This last relation is mathematically correct, since the term of the form0/0 that appears in Eq. (178) does not appear
here. However, this expression in quite cumbersome, and its use will make the resulting formulas unappealing and
difficult to understand. Since the notation in Eq. (178) is much simpler, we will use it, bearing at all times in mind that
the true meaning of it is given by Eq. (179).

In this section the matrix that appears in the analysis of robots moving in 1D has been treated. However, it is clear
that the 2D case can be treated in the same manner, and that the matrix

1
2
Udiag

(
eλit − e−λit

λi

)
UT
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that appears in the derivations, should be formally interpreted as

1
2
U

[
diag2N−2

(
eλit−e−λit

λi

)
0(2N−2)×2)

0T
(2N−2)×2 2tI2×2

]
UT (180)

G Relationship between continuous and discrete time position propagation
model

The discrete-time motion equations for a robot moving in 2D are

x(k + 1) = x(k) + V (k)δt cos(φ(k))
y(k + 1) = y(k) + V (k)δt sin(φ(k))

where1/δt is the frequency at which odometry measurements are being processed. By linearizing these equations the
error propagation equations in discrete time are readily derived:

[
x̃(k + 1)
ỹ(k + 1)

]
=

[
1 0
0 1

] [
x̃(k)
ỹ(k)

]
+

[
δt cos(φ̂(k)) −Vm(k)δt sin(φ̂(k))
δt sin(φ̂(k)) Vm(k)δt cos(φ̂(k))

] [
wVd

(k)
φ̃(k)

]

⇔ X̃(k + 1) = Φ(k)X̃(k) + Gd(k)Wd(k)

The covariance matrix of the system noise isGd(k)Qd(k)GT
d (k) whereQd is the covariance matrix of the discrete-

time velocity and orientation measurements,

Qd = E{Wd(k)WT
d (k)} =

[
σ2

Vd
0

0 σ2
φd

]

and therefore

Gd(k)Qd(k)GT
d (k) = δt2


 σ2

Vd
cos2(φ̂(k)) + σ2

φd
V 2

m(k) sin2(φ̂(k))
(
σ2

Vd
− σ2

φd
V 2

m(k)
)

sin(φ̂(k)) cos(φ̂(k))(
σ2

Vd
− σ2

φd
V 2

m(k)
)

sin(φ̂(k)) cos(φ̂(k)) σ2
Vd

sin2(φ̂(k)) + σ2
φd

V 2
m(k) cos2(φ̂(k))


(181)

The matrixGd(k)Qd(k)GT
d (k) represents the influx of uncertainty to the system over one sampling period, and there-

fore in order to create an equivalent continuous time system, the following must hold:

Gd(k)Qd(k)GT
d (k) =

∫ tk+1

tk

∫ tk+1

tk

Gc(τ)E{Wc(t)WT
c (τ)}GT

c (τ)dτdt

=
∫ tk+1

tk

Gc(τ)
[

σ2
Vc

0
0 σ2

φc

]
GT

c (τ)dτ

= δt


 σ2

Vc
cos2(φ̂(t)) + σ2

φc
V 2

m(t) sin2(φ̂(t))
(
σ2

Vc
− σ2

φc
V 2

m(t)
)

sin(φ̂(t)) cos(φ̂(t))(
σ2

Vc
− σ2

φc
V 2

m(t)
)

sin(φ̂(t)) cos(φ̂(t)) σ2
Vc

sin2(φ̂(t)) + σ2
φc

V 2
m(t) cos2(φ̂(t))




whereσ2
Vc

andσ2
φc

are the variances of the velocity measurements and orientation estimates of the equivalent contin-
uous time system, respectively. By comparison of the last expression with the expression in Eq. (181), the expressions
for defining the variance of the noise in the equivalent continuous time system follow:

σVc =
√

δtσVd
, and σφc =

√
δtσφd

(182)

H Matrix Inversion Lemma

If A is n× n, B is n×m, C is m×m andD is m× n then:

(A−1 + BC−1D)−1 = A−AB(DAB + C)−1DA (183)
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I Matrix Monotonicity of MN

In this appendix we show that the matrix

M = V T X (I2N×2N + h(Cs)X)−1
V (184)

is matrix increasing in the argumentX, i.e.,

X′ º X ⇒ M ′ º M (185)

We note that ifX is invertible (which is the case of interest), then

M = V T
(
X−1 + h(Cs)

)−1
V (186)

And from the last relation it follows that

X′ º X ⇒
X′−1 ¹ X−1 ⇒

X′−1 + h(Cs) ¹ X−1 + h(Cs) ⇒(
X′−1 + h(Cs)

)−1 º (
X−1 + h(Cs)

)−1 ⇒
V T

(
X′−1 + h(Cs)

)−1
V º V T

(
X−1 + h(Cs)

)−1
V ⇒

M ′ º M
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