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Abstract

This Technical Report studies the time evolution of the covariance of the position estimates in single-robot Si-
multaneous Localization And Mapping (SLAM). A closed-form expression is derived, that establishes a functional
relation between the noise parameters of the robot’s proprioceptive and exteroceptive sensors, the number of features
being mapped, and the attainable accuracy of SLAM. Furthermore, it is demonstrated how prior information about
the spatial density of landmarks can be utilized in order to compute a tight upper bound on the expected covariance of
the positioning errors. The derived closed-form expressions enable the prediction of SLAM positioning performance,
without resorting to extensive simulations, and thus offer an analytical tool for determining the sensor characteristics
required to achieve a desired degree of accuracy.

1 Motion in 1-D
We first examine the case of a robot moving in a one-dimensional environment, observing the positions of N landmarks
that exist in the same one-dimensional world. This is a simplified case that will allow us to develop intuition for the
more complicated (non-linear) case of motion in two dimensions.

1.1 Continuous time Riccati Equation
In order to describe the uncertainty of the position estimates for the robot and the landmarks during SLAM, we
formulate the problem as the estimation of the state of a linear dynamic system, and use the Riccati differential
equation (Eq. (100)) to describe the covariance of the estimates.

In Appendix E the general formula for the state propagation, measurement, and Riccati equations are given. For
a system comprising of a robot and N landmarks in 1-D, the (N + 1) × 1 state vector is x = [xR xL]T , where xR

is the position of the robot, and xL is the N × 1 vector containing the positions of the landmarks. The landmarks
are assumed stationary, and the robot uses its velocity measurements to propagate its state estimates. Thus the state
propagation equation is

ẋ(t) = v(t) + Gw(t)

where v(t) = [vR(t) 01×N ]T is the input vector1 w(t) is the noise in the measurement of the velocity of the robot,
assumed to be white zero-mean Gaussian, with constant variance q, and G = [1 01×N ]T . The state transition matrix
is equal to F (t) = 0(N+1)×(N+1).

1Throughout this Technical Report, 0m×n denotes the m × n matrix of zeros, 1m×n denotes the m × n matrix of ones, and In×n denotes
the n× n identity matrix.
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The robot is also equipped with an exteroceptive sensor enabling it to measure the relative positions of the land-
marks at each time instant. The relative position measurement associated with landmark i is given by the equation

zi(t) = xLi
(t)− xR(t)

=
[ −1 0 . . . 1︸︷︷︸

i+1 position

. . . 0
]

x(t)

= Hix(t)

and thus the measurement matrix for the system is found by stacking the rows Hi, i = 1 . . . N :

H =
[ −1N×1 IN×N

]
(1)

The measurement model for the exteroceptive measurements is:

z(t) = Hx(t) + n(t) (2)

where n(t) is the measurement noise, assumed white zero-mean Gaussian, with covariance matrix R.
The Riccati differential equation that describes the time evolution of the covariance of the position estimates of the

robot and landmarks is (cf. Appendix E):

Ṗ (t) = GqGT − P (t)HT R−1HP (t)

= qQn − P (t)HT R−1HP (t) (3)

where P (t) denotes the covariance matrix, and

Qn =
[

1 01×N

0N×1 0N×N

]
(4)

For the solution of this matrix differential equation the standard methodology involving the decomposition of P (t) into
two matrices, and forming the Hamiltonian matrix is employed [1]. The solution is described in what follows.

In order to facilitate the derivations, we first define as Pn the normalized covariance

Pn(t) =
1
q
P (t) ⇒ P (t) = qPn(t) (5)

Substitution in Eq. (3) yields

qṖn(t) = qQn − qPn(t)HT R−1HqPn(t) ⇒
Ṗn(t) = Qn − Pn(t)(qHT R−1H)Pn(t)

The notation is simplified by introducing the matrix C = qHT R−1H , yielding the following Riccati differential
equation:

Ṗn(t) = Qn − Pn(t)CPn(t) (6)

The initial value of this differential equation is denoted as

Pn(0) =
[

Prr PrL

PLr PLL

]
(7)

which implies that the initial value of the covariance matrix for 1D SLAM is equal to

P (0) = qPn(0) = q

[
Prr PrL

PLr PLL

]
(8)

This is the most general form possible, since no assumption on P (0) is imposed.
The structure of matrix C will be useful in the following. It is easy to see that C is a (N + 1)× (N + 1) matrix,

given by

C = HT R−1H =
[

ρ2 −rT

−r R−1
n

]
(9)
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where
ρ2 = 11×NR−1

n 1N×1,

Rn =
1
q
R

and
r = R−1

n 1N×1

At this point we note that the measurement matrix H can be viewed as the incidence matrix of a directed graph with
N + 1 vertices, in which N vertices (corresponding to the landmarks) are connected with exactly one edge to a vertex
corresponding to the robot. Since this is a connected graph, the rank of its incidence matrix is N [2]. Moreover, R
is a covariance matrix, and therefore it is of full rank. Consequently, the matrix C = HT R−1H is of rank N , i.e., it
is rank deficient, and its nullspace is of dimension 1. It is straightforward to verify that the sum of the elements of all
rows of C equals zero. This implies that C1(N+1)×1 = 0(N+1)×1, and hence the vector 1√

N
1(N+1)×1 is the basis of

its nullspace. The solution to Eq. (6) is found by substituting

Pn = AnB−1
n (10)

Note that since

BnB−1
n = I

it is

d

dt

(
BnB−1

n

)
= 0 ⇒

ḂnB−1
n + Bn

d

dt
(B−1

n ) = 0 ⇒
d

dt
(B−1

n ) = −B−1
n ḂnB−1

n

Substituting in Eq. (10) we have

Ṗn = ȦnB−1
n −AnB−1

n ḂnB−1
n (11)

Using Eqs. (10) and (11), Eq. (6) can be written as:

ȦnB−1
n −AnB−1

n ḂnB−1
n = Qn −AnB−1

n CAnB−1
n

Multiplying both sides by Bn we have

Ȧn −AnB−1
n Ḃn = QnBn −AnB−1

n CAn

Separating the nonlinear from the linear terms and noting that

−AnB−1
n Ḃn = −AnB−1

n CAn ⇒
Ḃn = CAn

we can decompose the Riccati in the following two equations:

Ȧn = QnBn

Ḃn = CAn

or in a matrix form
[

Ḃn

Ȧn

]
=

[
0 C

Qn 0

] [
Bn

An

]
(12)
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Where the matrix

H =
[

0 C
Qn 0

]
(13)

is the Hamiltonian of this system. The general solution of Eq. (12) is given by
[

Bn(t)

An(t)

]
= eHt

[
Bn(0)
An(0)

]
(14)

where An(0) and Bn(0) are the initial values for these matrices. These are selected so that the identity Pn(0) =
An(0)B−1

n (0) holds, i.e., An(0) = Pn(0) and Bn(0) = I . Employing Taylor series expansion for computing the
exponential of the Hamiltonian matrix yields:

eHt = I +Ht +
H2t2

2!
+
H3t3

3!
+ · · · =

=


 I + (CQn) t2

2! + (CQn)2 t4

4! + (CQn)3 t6

6! + · · · C
(

t
1!I + (CQn) t3

3! + (CQn)2 t5

5! + · · ·
)

Qn

(
t
1!I + (CQn) t3

3! + (CQn)2 t5

5! + · · ·
)

I + (CQn) t2

2! + (CQn)2 t4

4! + (CQn)3 t6

6! + · · ·




In order to derive a simpler expression for the last relation, the eigenvalue decomposition of matrix CQn is em-
ployed. By simply carrying out the matrix multiplications, it is straightforward to show that this decomposition can be
written as

CQn = UΛoU
−1 =

[
1 01×N

− 1
ρ2 r IN×N

] [
ρ2 01×N

0N×1 0N×N

] [
1 01×N
1
ρ2 r IN×N

]
(15)

where U is the modal matrix of CQn and Λo is the diagonal matrix of eigenvalues of CQn. Noting that CQn =
(QnC)T , it becomes clear that the eigendecomposition of QnC can be written as QnC = U−T ΛoU

T . Substituting
the expressions for CQn and QnC into Eq. (16) yields

eHt =


 I + (CQn) t2

2! + (CQn)2 t4

4! + (CQn)3 t6

6! + · · · C
(

t
1!I + (QnC) t3

3! + (QnC)2 t5

5! + · · ·
)

Qn

(
t
1!I + (CQn) t3

3! + (CQn)2 t5

5! + · · ·
)

I + (QnC) t2

2! + (QnC)2 t4

4! + (QnC)3 t6

6! + · · ·




=


 U

(
I + Λo

t2

2! + Λ2
o

t4

4! + Λ3
o

t6

6! + · · ·
)

U−1 CU−T
(

t
1!I + Λo

t3

3! + Λ2
o

t5

5! + · · ·
)

UT

QnU
(

t
1!I + Λo

t3

3! + Λ2
o

t5

5! + · · ·
)

U−1 U−T
(
I + Λo

t2

2! + Λ2
o

t4

4! + Λ3
o

t6

6! + · · ·
)

UT




In the above expression the following time varying terms appear:

K1(t) = I + Λo
t2

2!
+ Λ2

o

t4

4!
+ Λ3

o

t6

6!
+ · · ·

=
[

1 + ρ2 t2

2! + ρ4 t4

4! + ρ6 t6

6! + · · · 01×N

01×N IN×N

]

=
[

eρt+e−ρt

2 01×N

01×N IN×N

]

and

K2(t) =
t

1!
I + Λo

t3

3!
+ Λ2

o

t5

5!
+ · · ·

=
[

t
1! + ρ2 t3

3! + ρ4 t5

5! + · · · 01×N

01×N t IN×N

]

=

[
1
ρ

(
ρ t

1! + ρ3 t3

3! + ρ5 t5

5! + · · ·
)

01×N

01×N t IN×N

]

=

[
1
ρ

eρt−e−ρt

2 01×N

01×N t IN×N

]
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In order to derive simpler expressions for the above terms, the identities of Appendix A have been employed. The
following expression for eHt is therefore obtained:

eHt =




U

[
eρt+e−ρt

2 01×N

01×N IN×N

]
U−1 CU−T

[
1
ρ

eρt−e−ρt

2 01×N

01×N t IN×N

]
UT

QnU

[
1
ρ

eρt−e−ρt

2 01×N

01×N t IN×N

]
U−1 U−T

[
eρt+e−ρt

2 01×N

01×N IN×N

]
UT




=
[

UK(t)U−1 CL(t)UT

QnUL(t)U−1 U−T K(t)UT

]
(16)

where we have used the notation

K(t) =
[

eρt+e−ρt

2 01×N

01×N IN×N

]

and

L(t) =

[
1
ρ

eρt−e−ρt

2 01×N

01×N t IN×N

]

Substituting for eHt in Eq. (14) and using the initial values An(0) = Pn(0), Bn(0) = I , yields:
[

Bn(t)

An(t)

]
= eHt

[
I

Pn(0)

]
=

[
UK(t)U−1 + CU−T L(t)UT Pn(0)
QnUL(t)U−1 + U−T K(t)UT Pn(0)

]

By carrying out the matrix multiplications, it is easy to verify that QnU = U−T Qn, and thus Eq. (17) can be written
as

[
Bn(t)

An(t)

]
=

[
UK(t)U−1 + CU−T L(t)UT Pn(0)

U−T QnL(t)U−1 + U−T K(t)UT Pn(0)

]

and thus the normalized covariance matrix becomes

Pn(t) = An(t)B−1
n (t)

=
(
U−T QnL(t)U−1 + U−T K(t)UT Pn(0)

) (
UK(t)U−1 + CU−T L(t)UT Pn(0)

)−1

= U−T
(
QnL(t) + K(t)UT Pn(0)U

)
U−1U

(
K(t) + U−1CU−T L(t)UT Pn(0)U

)−1
U−1

= U−T (QnL(t) + K(t)P0)
(
K(t) + U−1CU−T L(t)P0

)−1
U−1 (17)

where we have introduced the quantity

P0 = UT Pn(0)U =
[

Prr − 2
ρ2 rT PLr + 1

ρ4 rT PLLr PrL − 1
ρ2 rT PLL

PLr − 1
ρ2 PLLr PLL

]
=

[
P11 P12

P21 P22

]
(18)

In order to facilitate the derivation of the limit of the covariance we write Eq. (17) in the form

Pn(t) = U−T
(
QnL(t)K−1

(t) + M (t)
)
U−1

= U−T QnL(t)K−1
(t)U−1 + U−T M (t)U−1

= Pa(t) + Pb(t) (19)

where M (t) is a matrix to be determined. We note that

Pn(t) = U−T
(
QnL(t)K−1

(t) + M (t)
)
U−1 ⇒

U−T
(
QnL(t)K−1

(t) + M (t)
)
U−1 = U−T (QnL(t) + K(t)P0)

(
K(t) + U−1CU−T L(t)P0

)−1
U−1 ⇒

QnL(t)K−1
(t) + M (t) = (QnL(t) + K(t)P0)

(
K(t) + U−1CU−T L(t)P0

)−1
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Multiplying both sides by
(
K(t) + U−1CU−T L(t)P0

)
yields

(QnL(t)K−1
(t) + M (t))(K(t) + U−1CU−T L(t)P0) = QnL(t)(t) + KP0 ⇒

QnL(t) + QnL(t)K−1
(t)U−1CU−T L(t)P0 + M (t)(K(t) + U−1CU−T L(t)P0) = QnL(t) + K(t)P0

And solving for M (t) yields

M (t) = (K(t)−QnL(t)K−1
(t)U−1CU−T L(t))P0(K(t) + U−1CU−T L(t)P0)−1

Evaluation of the expression K(t)−QnL(t)K−1(t)U−1CU−T L(t) verifies that

K(t)−QnL(t)K−1
(t)U−1CU−T L(t) = K−1

(t)

and thus
M (t) = K−1

(t)P0(K(t) + U−1CU−T L(t)P0)−1

1.2 Steady State Covariance
It is of interest to evaluate the steady state value of this covariance matrix, i.e., the value as t → ∞. We observe (cf.
Eq. (19)) that the normalized covariance matrix comprises of two terms. The first term is independent of the initial
conditions, and its limit value is

lim
t→∞

Pa(t) = lim
t→∞

U−T QnL(t)K−1
(t)U−1 (20)

= U−T lim
t→∞

[
1
ρ

eρt−e−ρt

eρt+e−ρt 01×N

01×N 0N×N

]
U−1

= U−T

[ 1
ρ 01×N

01×N 0N×N

]
U−1

=
[ 1

ρ 01×N

01×N 0N×N

]
(21)

The second term in Eq. (19) depends on the initial covariance matrix, and is equal to

lim
t→∞

Pb(t) = lim
t→∞

U−T M (t)U−1

= U−T
(

lim
t→∞

M (t)

)
U−1

where

lim
t→∞

M (t) = lim
t→∞

K−1
(t)P0(K(t) + U−1CU−T L(t)P0)−1

= lim
t→∞

K−1
(t)P0

(
I + K−1

(t)U−1CU−T L(t)P0

)−1
K−1

(t)

lim
t→∞

K−1
(t)Ξ(t)K−1

(t)

where
Ξ(t) = P0

(
I + K−1

(t)U−1CU−T L(t)P0

)−1
(22)

But we note that

lim
t→∞

K−1 = lim
t→∞

[
2

eρt+e−ρt 01×N

01×N IN×N

]

=
[

0 01×N

01×N IN×N

]

Therefore we can write

lim
t→∞

M (t) =
[

0 01×N

01×N IN×N

](
lim

t→∞
Ξ(t)

) [
0 01×N

01×N IN×N

]
(23)
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From this expression we conclude that in order to find the steady state value of the term Pb(t), only the limit of the
(2,2) submatrix element of Ξ(t) is necessary, since all the other submatrix elements are multiplied by zero coefficients.
To this end, we first evaluate the matrix K−1(t)U−1CU−T L(t). By simply carrying out the matrix multiplications it
is straightforward to show that

K−1
(t)U−1CU−T L(t) =

[
α(t)ρ 01×N

0N×1 tA

]
(24)

where

α(t) =
eρt − e−ρt

eρt + e−ρt

and A is a N ×N constant matrix, given by

A = R−1
n − 1

ρ2
rrT

We note that A is the Schur complement of ρ2 in C, and since ρ2 > 0, the rank of A is determined by the following
property of Schur complements:

rank(C) = rank(A) + rank(ρ2) ⇒ rank(A) = N − 1

Thus A is rank deficient, and

A1N×1 =
(

R−1
n − 1

ρ2
rrT

)
1N×1

= R−1
n 1N×1 − 1

ρ2
rrT 1N×1

= r− 1
ρ2

rρ2

= 0

Thus we conclude that the eigenvector associated with the zero eigenvalue of A is AN = 1√
N

1N×1. This fact will be
useful in the derivations that follow.

Using the expression of Eq. (24), Ξ(t) can be expressed as

Ξ(t) =
[

P11 P12

P21 P22

](
I +

[
α(t)ρ 01×N

0N×1 tA

] [
P11 P12

P21 P22

])−1

=
[

P11 P12

P21 P22

] [
1 + α(t)ρP11 α(t)ρP12

tAP21 IN×N + t AP22

]−1

=
[

Ξ11(t) Ξ12(t)

Ξ21(t) Ξ22(t)

]
(25)

Using the formula for the inversion of a partitioned matrix, given in Appendix D, and carrying out the matrix multi-
plication yields the following expression for the (2,2) submatrix element of Ξ(t):

Ξ22(t) = F (t)(AF (t)t + IN×N )−1

where F (t) is the symmetric matrix defined as

F (t) = P22 − α(t)ρP21P12

1 + α(t)ρP11
(26)

In order to find the limit of Ξ22 at steady state, we employ the Singular Value Decomposition (SVD) of matrix AF (t),
which is given by:

AF (t) = U (t)Σ(t)V T
(t) = [U1(t) U2(t)]

[
Σ1(t) 0(N−p)×p

0p×(N−p) 0p×p

] [
V T

1 (t)

V T
2 (t)

]
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In the above expression, U (t) and V (t) are the matrices of left and right singular vectors, and Σ(t) is the matrix of
singular values. Since the matrix A is rank deficient, AF (t) will also be rank deficient, and will have p (at least one)
singular values equal to zero. The indices 1 and 2 in the partitioning of the matrices U (t) and V (t) correspond to the
singular vectors associated with the positive and zero singular values of AF (t), respectively.

In order to compute the limit of Ξ22(t) after sufficient time, we apply the following lemma, whose proof is given
in Appendix B:

Lemma 1.1 If Y (t) is a square matrix, whose limit Y (∞) = limt→∞ Y (t) exists, and whose singular value decom-
position is denoted as Y (t) = W (t)Λ(t)ZT (t), then

lim
t→∞

(Y (t)t + I)−1 = ZN (∞)(WN (∞)T ZN (∞))−1WN (∞)T (27)

In the last expression ZN (∞) and WN (∞) are matrices whose column vectors are the right and left singular vectors
of Y (∞) associated with the zero singular values.

We thus obtain

lim
t→∞

Ξ22(t) = lim
t→∞

F (AF (t)t + IN×N )−1

= F (∞)V2∞
(
UT

2∞V2∞
)−1

UT
2∞ (28)

where U2∞ and V2∞ are the left and right singular vectors associated with the zero singular values of the matrix

AF (∞) = A

(
P22 − ρP21P12

1 + ρP11

)

We note that the column vectors of U2∞ satisfy UT
i AF (∞) = 01×N which implies that either UT

i A = 01×N or
UT

i A ∈ Null(F (∞)). From the preceding analysis of the properties of matrix A, it becomes clear that the only unit
vector that satisfies UT

i A = 01×N is the vector AN = 1√
N

1N×1. Therefore the matrix U2∞ can be written as

U2∞ = [AN UF ]

where UF is a matrix having a number of columns equal to the dimension of the nullspace of F (∞).
Similarly, we observe that the column vectors of the matrix V2∞ satisfy AF (∞)Vi = 0N×1 which implies that

either F (∞)Vi = cAN , with c an arbitrary nonzero number, or F (∞)Vi = 0N×1. We therefore write the matrix V2∞
as

V2∞ = [VA VF ]

where the q columns of VA are the singular vectors that yield F (∞)Vi = cAN , and VF are the singular vectors that
form a basis of the nullspace of F (∞). We note that if AN does not belong to the range of F (∞), then VA does not
exist in the above partitioning.

We can thus write

lim
t→∞

Ξ22(t) = F [VA VF ]
(
UT

2∞V2∞
)−1

[AN UF ]T

= [FVA FVF ]
(
UT

2∞V2∞
)−1

[AN UF ]T

= [ANc 0]
(
UT

2∞V2∞
)−1

[AN UF ]T

= ANc
[(

UT
2∞V2∞

)−1
]
11

AT
N

=
1
N

1N×1c
[(

UT
2∞V2∞

)−1
]
11

11×N (29)

where c is a 1× q row vector, and
[(

UT
2∞V2∞

)−1
]
11

is the (1,1) submatrix of
(
UT

2∞V2∞
)−1. From the expression in

Eq. (29) we conclude that limt→∞ Ξ22(t) is a matrix of the form mnn1N×N , i.e., it is an N ×N matrix having all its
elements being equal. We can thus write

lim
t→∞

Ξ22(t) =
1

N2

∑(
F (∞)V2∞

(
UT

2∞V2∞
)−1

UT
2∞

)
1N×N = mnn1N×N (30)
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where the summation is being performed over all elements of the matrix F (∞)V2∞
(
UT

2∞V2∞
)−1

UT
2∞ . Substitution

of this expression in Eq. (23) yields

lim
t→∞

M (t) =
[

0 01×N

01×N mnn1N×N

]

and thus

lim
t→∞

Pb(t) = U−T

[
0 01×N

01×N mnn1N×N

]
U−1

=
[

mnn mnn11×N

mnn1N×1 mnn1N×N

]

Finally, the steady state value of the normalized covariance matrix Pn(t) is equal to

Pnss = lim
t→∞

Pn(t)

= lim
t→∞

(Pa(t) + Pb(t)) (31)

=
[ 1

ρ + mnn mnn11×N

mnn1N×1 mnn1N×N

]
(32)

Recalling that P (t) = qPn(t), we can compute the steady state uncertainty, Pss, of SLAM in the one-degree of freedom
case. We state this as a lemma:

Lemma 1.2 Consider a robot performing Simultaneous Localization and Mapping (SLAM) in 1D, by continuously
observing N features in the environment. If the covariance of the robot’s odometric measurements is q, the covariance
matrix of its exteroceptive measurements is R, and the initial covariance matrix of SLAM is equal to:

P (0) = q

[
Prr PrL

PLr PLL

]

then the steady state covariance is given by

Pss = q

[ 1
ρ + mnn mnn11×N

mnn1N×1 mnn1N×N

]
(33)

where
ρ2 = q11×NR−11N×1

and
mnn =

1
N2

∑ (
F (∞)V2∞

(
UT

2∞V2∞
)−1

UT
2∞

)
(34)

with

F (∞) = PLL − ρ

1 + ρPrr − 2
ρr

T PLr + 1
ρ3 rT PLLr

(
PLr − 1

ρ2
PLLr

)(
PrL − 1

ρ2
rT PLL

)
(35)

In these expressions r = qR−11N×1 and U2∞ , V2∞ are matrices whose column vectors are the basis vectors of the
left and right nullspace of (qR−1 − 1

ρ2 rrT )F1(∞).

1.3 Special Case: Initially unknown landmark positions
Lemma 1.2 proves that for any initial value of the covariance matrix, the map estimates in 1D SLAM become fully
correlated at steady state. The result of this lemma is important because it addresses the most general case of SLAM (in
1D). However, the resulting expression is quite cumbersome, and additionally, in practical applications, the following
situation usually occurs:
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• The robot’s position estimate is initially uncorrelated from the landmarks’ position estimates

• The landmarks’ initial uncertainty is infinite (i.e. we have no prior knowledge about the map)

This scenario is modeled by selecting the following value for the initial covariance matrix:

P (0) = q

[
prr 01×N

0N×1 pLLIN×N

]
(36)

By taking the limit of the expression for the steady state covariance as pLL →∞, we derive a much simpler analytical
solution for the steady state covariance in SLAM.

When the initial uncertainty is given by Eq. (36), matrix F (∞) becomes

F (∞) = pLLIN×N +
p2

LLrrT

ρ3 + ρ4prr + pLLrT r

=
(

1
pLL

IN×N +
1

ρ3(1 + ρprr)
rrT

)−1

(37)

This matrix is nonsingular, and therefore AF (∞) has a single zero eigenvalue, caused by the zero eigenvalue of
A = (R−1

n − 1
ρ2 rrT ). Thus we can write

V2∞ =
1

||F (∞)−11N×1||F (∞)−11N×1

and
U2∞ =

1√
N

1N×1

Substitution in Eq. (34) yields

mnn =
1

N2

∑ (
F (∞)V2∞

(
UT

2∞V2∞

)−1

UT
2∞

)

=
1

N2

∑ (
F (∞)

1

||F (∞)−11N×1||F (∞)−11N×1

(
1√
N

11×N
1

||F (∞)−11N×1||F (∞)−11N×1

)−1
1√
N

11×N

)

=
1

N2

∑ (
1N×1

(
11×NF (∞)−11N×1

)−1
11×N

)

=
1

N211×NF (∞)−11N×1

∑
1N×111×N

=
1

11×NF (∞)−11N×1

=
1∑

F (∞)−1

where the sum is performed over all elements of F (∞)−1. Thus, employing the result of Eq. (37) we obtain

∑
F (∞)−1 =

∑ 1
pLL

IN×N +
∑ rrT

ρ3(1 + ρprr)

=
N

pLL
+

1
ρ3(1 + ρprr)

∑
rrT

=
N

pLL
+

1
ρ3(1 + ρprr)

ρ2
N∑

i=1

ri

=
N

pLL
+

1
ρ3(1 + ρprr)

ρ4

=
N

pLL
+

ρ

1 + ρprr
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We thus see that

mnn =
1∑

F (∞)−1

=
1

N
pLL

+ ρ
1+ρprr

=
pLL(1 + ρprr)

N(1 + ρprr) + ρpLL
(38)

Furthermore, if the initial uncertainty of the landmark’s positions is infinite, we have that

lim
pLL→∞

mnn = lim
pLL→∞

pLL(1 + ρprr)
N(1 + ρprr) + ρpLL

=
1
ρ

+ prr (39)

Substitution in Eq. (33) yields the steady state uncertainty of SLAM:

Pss =
[ q

ρ 01×N

0N×1 0N×N

]
+

(
q

ρ
+ qprr

)
1(N+1)×(N+1) (40)

If in addition the initial uncertainty about the robot’s position is zero, as is usually the case in SLAM, the steady state
covariance reduces to

Pss =
[ q

ρ 01×N

0N×1 0N×N

]
+

q

ρ
1(N+1)×(N+1) (41)

i.e., the steady state covariance of the robot is exactly double than that of the landmarks.
In order to gain more insight on the effect of the accuracy of the sensors on the steady state covariance, we consider

the special case where the all the landmarks are being measured with equal accuracy. In this case, ρ2 = Nq
r , where r

is the covariance of the measurements of the landmark’s positions, and the steady state covariance becomes

Pss =
[ √

qr
N 01×N

0N×1 0N×N

]
+

√
qr

N
1(N+1)×(N+1) (42)

In this case, we observe that the steady state accuracy depends on the geometric mean of the accuracy of the proprio-
ceptive and exteroceptive sensors of the robot.
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2 Simultaneous Localization and Mapping in 2-D
We consider a mobile robot moving on a planar surface, while observing N landmarks in the environment. The robot
uses proprioceptive measurements (e.g., from an odometric or inertial sensor) to propagate its state estimates and
exteroceptive measurements (e.g., from a laser range finder) to measure the relative positions of the map features with
respect to itself. These measurements are fused using an Extended Kalman Filter (EKF) in order to produce estimates
of the position of the robot and the landmarks. In our formulation, it is assumed that an upper bound for the variance
of the errors in the robot’s orientation estimates can be determined a priori. This allows us to decouple the task of
position estimation from that of orientation estimation and facilitates the derivation of a closed-form expression for an
upper bound on the positioning uncertainty.

The robot’s orientation uncertainty is bounded when, for example, absolute orientation measurements from a com-
pass or a sun sensor are available, or when perpendicularity of the walls in an indoor environment is used to infer
orientation. In cases where neither approach is possible, our analysis still holds under the condition that a conserva-
tive upper bound for the orientation uncertainty is determined by alternative means, e.g., by estimating the maximum
orientation error accumulated, over a certain period of time, due to the integration of noise in the odometric measure-
ments [3]. It should be noted that the requirement for bounded orientation error covariance is not too restrictive: In the
EKF framework, the nonlinear state propagation and measurement equations are linearized around the estimates of the
robot’s orientation. If the errors in these estimates are allowed to increase unbounded, the linearization will unavoid-
ably become erroneous, and the estimates will diverge. Thus, in the vast majority of practical situations, provisions are
made in order to constrain the robot’s orientation uncertainty within given limits.

Having determined an upper bound on the orientation uncertainty of the robot allows us to decouple the task
of orientation estimation from that of position estimation. The velocity and orientation of the robot are treated as
measurement inputs for propagating the robot’s state estimates. This formulation facilitates the derivation of upper
bounds on the steady state uncertainty of SLAM, and is presented in the following sections.

2.1 Position propagation
The continuous time kinematic equations for a non-holonomic robot moving in 2-d are

ẋr(t) = V (t) cos(φ(t)) (43)
ẏr(t) = V (t) sin(φ(t)) (44)

where V (t) is the robot’s translational velocity at time t, and φ(t) is the robot’s orientation. In the Kalman filter
framework, the estimates of the robot’s position are propagated using the measurements of the robot’s velocity, Vm(t),
and the estimates of the robot’s orientation, φ̂(t), using the following equations:

˙̂xr = Vm(t) cos(φ̂(t))
˙̂yr = Vm(t) sin(φ̂(t))

Clearly, these equations are time varying and nonlinear due to the dependence on the robot’s orientation. By linearizing
Eqs. (43) and (44) the error propagation equation for the robot’s position is readily derived:

[ ˙̃xr

˙̃yr

]
=

[
cos(φ̂(t)) −Vm(t) sin(φ̂(t))
sin(φ̂(t)) Vm(t) cos(φ̂(t))

] [
wV (t)

φ̃(t)

]

⇔ X̃r = 02×2X̃r + Gr(t)W (t) (45)

where wV (t) is a white Gaussian noise sequence of variance σ2
V , affecting the velocity measurements, and φ̃(t) is the

error in the robot’s orientation estimate at time t. This is modeled as a white Gaussian noise sequence of variance σ2
φ.

From Eq. (45) we deduce that the covariance matrix of the system noise affecting the robot’s state is

Qr(t) = E{Gr(t)W (t)WT
(t)GT

r (t)}
= Gr(t)E{W (t)WT

(t)}GT
r (t)

=
[

cos(φ̂(t)) −Vm(t) sin(φ̂(t))
sin(φ̂(t)) Vm(t) cos(φ̂(t))

] [
σ2

V 0
0 σ2

φ

] [
cos(φ̂(t)) −Vm(t) sin(φ̂(t))
sin(φ̂(t)) Vm(t) cos(φ̂(t))

]T
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=
[

cos(φ̂(t)) − sin(φ̂(t))
sin(φ̂(t)) cos(φ̂(t))

] [
σ2

V 0
0 V 2

m(t)σ2
φ

] [
cos(φ̂(t)) − sin(φ̂(t))
sin(φ̂(t)) cos(φ̂(t))

]T

= C(φ̂(t))
[

σ2
V 0
0 V 2

m(t)σ2
φ

]
CT (φ̂(t)) (46)

where C(φ̂) denotes the rotation matrix associated with φ̂. The landmarks are modeled as static points in 2D space,
and therefore the state propagation equations are

ẊLi
(t) = 02×1, for i = 1..N

Hence, the estimates for the landmark positions are propagated using the relations

˙̂
XLi

= 02×1, for i = 1..N

while the errors are propagated by
˙̃

XLi = 02×1, for i = 1..N

Using these results we can now write the error propagation equations for the entire system:

˙̃
X(t) = 0(2N+2)×(2N+2)X̃(t) +

[
Gr(t) 02×2N

] [
wV (t)

φ̃(t)

]
(47)

⇔ ˙̃
X(t) = F (t) X̃(t) + G(t) W (t) (48)

where the state vector of the entire system has been defined as the stacked vector comprising of the position of the
robot and landmarks, i.e.,

X(t) =




Xr(t)

XL1 (t)

...
XLN (t)


 =




xr(t)

yr(t)

xL1 (t)

yL1 (t)

...
xLN

(t)

yLN
(t)




The covariance matrix of the system noise is given by

Q(t) = E{G(t)W (t)WT
(t)GT

(t)}
=

[
E{G(t)W (t)WT (t)GT (t)} 02×2N

02N×2 02N×2N

]

=
[

Qr(t) 02×2N

02N×2 02N×2N

]
(49)

2.2 Measurement Model
At every time instant, the robot measures the relative positions of each of the N landmarks in the environment. The
relative position measurement associated with the ith landmark is given by:

zi(t) = CT (φi(t)) (XLi (t)−Xr(t)) + nzi (t) (50)

where nzi is the noise affecting this measurement. By linearizing Eq. (50), the measurement error equation is obtained:

z̃i(t) = zi(t)− ẑi(t)

= CT (φ̂(t)) (XLi (t)−Xr(t))− CT (φ̂(t))J
(
X̂Li (t)− X̂r(t)

)
φ̃(t) + nzi (t)
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= CT (φ̂(t))
[ −I2×2 .. I2×2 .. 02×2

]




X̃r(t)

X̃L1 (t)

..

X̃Li
(t)

..

X̃LN
(t)




+
[

I2×2 −CT (φ̂(t))J∆̂pi(t)

] [
nzi (t)

φ̃(t)

]

= Hi(t)X̃(t) + Γi(t)ni(t) (51)

where

J =
[

0 −1
1 0

]
, ∆̂pi(t) = X̂Li

(t)− X̂r(t)

and we note that the measurement matrix for this relative position measurement can be written as

Hi(t) = CT (φ̂(t))
[ −I2×2 .. I2×2︸︷︷︸

i+1 block

.. 02×2
]

= CT (φ̂(t))Hoi
(52)

where
Hoi = [−1 .. 1︸︷︷︸

i+1

..0]⊗ I2×2

and ⊗ denotes the Kronecker matrix product. Since the robot measures each of the N landmarks at each time step, the
measurement matrix H(t) for the system is a block matrix whose block rows are Hi(t), and we can write

H(t) =




CT (φ̂(t))Ho1

CT (φ̂(t))Ho2

...
CT (φ̂(t))HoN


 = Dφ̂(t)

T Ho (53)

where
Dφ̂(t) = IN×N ⊗ C(φ̂(t))

and

Ho =
[ −1N×1 I2×2

]⊗ I2×2 (54)

The covariance for the measurement error is given by

Rii(t) = Γi(t)E{ni(t)n
T
i (t)}ΓT

i (t)

= Rzi (t) + Rφ̃i
(t) (55)

This expression encapsulates all sources of noise and uncertainty that contribute to the measurement error z̃i(t). More
specifically, Rzi (t) is the covariance of the noise ni(t) in the recorded relative position measurement zi(t) and Ri(t) is
the additional covariance term due to the error φ̃(t) in the orientation estimate the robot. This is given by:

Rφ̃i
(t) = CT (φ̂(t))J∆̂pi(t)E{φ̃2}∆̂p

T

i (t)JT C(φ̂(t))

= σ2
φCT (φ̂(t))J∆̂pi(t)∆̂p

T

i (t)JT C(φ̂(t)) (56)

From this expression we conclude that the uncertainty σ2
φ in the orientation estimate φ̂(t) of the robot is amplified by

the distance between the robot and corresponding landmark.
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The measurement of the relative position of the ith landmark is comprised of the distance ρi and bearing θi to this
landmark, expressed in the robot’s local coordinate frame, i.e.,

zi(t) =
[

ρi(t) cos θi(t)

ρi(t) sin θi(t)

]
+ nzi

(t)

By linearizing, the noise in this measurement can be expressed as:

nzi
(t) '

[
cos θ̂i(t) −ρ̂i(t) sin θ̂i(t)

sin θ̂i(t) ρ̂i(t) cos θ̂i(t)

] [
nρi (t)

nθi
(t)

]

where nρi
is the error in the range measurement, nθi

is the error in the bearing measurement, and

ρ̂2
i (t) = ∆̂p

T

i (t)∆̂pi(t)

θ̂i(t) = Atan2(∆̂yi(t), ∆̂xi(t))− φ̂(t)

are the estimates of the range and bearing to the landmark, expressed with respect to the robot’s coordinate frame. At
this point we note that

C(φ̂(t))nzi (t) =
[

cos φ̂(t) − sin φ̂(t)

sin φ̂(t) cos φ̂(t)

] [
cos θ̂i(t) −ρ̂i(t) sin θ̂i(t)

sin θ̂i(t) ρ̂i(t) cos θ̂i(t)

] [
nρi

(t)

nθi
(t)

]

=
[

cos(φ̂(t) + θ̂i(t)) −ρ̂i(t) sin(φ̂(t) + θ̂i(t))
sin(φ̂(t) + θ̂i) ρ̂i(t) cos(φ̂(t) + θ̂i(t))

] [
nρi (t)

nθi (t)

]

=
[

1
ρ̂i

∆̂pi(t) J∆̂pi(t)

] [
nρi (t)

nθi (t)

]

and therefore the quantity Rzi (t) can be written as:

Rzi (t) = E{nzi (t)n
T
zi

(t)}

= CT (φ̂(t))
[

1
ρ̂i(t)

∆̂pi(t) J∆̂pi(t)

]
E

{ [
nρi

nθi

] [
nρi

nθi

]T }[
1

ρ̂i(t)
∆̂pi(t) J∆̂pi(t)

]T

C(φ̂(t))

= CT (φ̂(t))
[

1
ρ̂i(t)

∆̂pi(t) J∆̂pi(t)

] [
σ2

ρ 0
0 σ2

θ

] [
1

ρ̂i(t)
∆̂pi(t) J∆̂pi(t)

]T

C(φ̂(t))

= CT (φ̂(t))

(
σ2

ρ

ρ̂2
i (t)

∆̂pi(t)∆̂p
T

i (t) + σ2
θJ∆̂pi(t)∆̂p

T

i (t)JT

)
C(φ̂(t))

= CT (φ̂(t))

(
σ2

ρ

ρ̂2
i (t)

(
ρ̂2

i (t)I2×2 − J∆̂pi(t)∆̂p
T

i (t)JT
)

+ σ2
θJ∆̂pi(t)∆̂p

T

i (t)JT

)
C(φ̂(t))

= CT (φ̂(t))

(
σ2

ρI2×2 +

(
σ2

θ −
σ2

ρ

ρ̂2
i (t)

)
J∆̂pi(t)∆̂p

T

i (t)JT

)
C(φ̂(t)) (57)

where the variance of the noise in the distance and bearing measurements is given by

σ2
ρ = E{n2

ρi
(t)} , σ2

θ = E{n2
θi

(t)}

respectively. Due to the existence of the common error component attributed to φ̃(t), the measurements that each robot
performs are correlated. The matrix of correlation between the errors in the measurements zi(t) and zj(t) is

Rij(t) = Γ(t)E{ni(t)n
T
j (t)}ΓT

(t)

= σ2
φCT (φ̂(t))J∆̂pi(t)∆̂p

T

j (t)JT C(φ̂(t)) (58)

Using the results of Eqs. (56), (57), and (58), the covariance matrix of all the measurements performed by the robot
can now be computed. This is a matrix whose 2 × 2 block diagonal elements equal Rii(t), i = 1 . . . N while its
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off-diagonal block elements are Rij`(t), i, j = 1 . . . N, i 6= j. It is easy to see that this matrix can be written in a more
convenient form as:

R(t) = Dφ̂(t)
T Ro(t)Dφ̂(t) (59)

where

Ro(t) =




σ2
ρI2×2 +

(
σ2

φ + σ2
θ −

σ2
ρ

ρ̂2
1(t)

)
J∆̂p1(t)∆̂p

T

1 (t)JT . . . σ2
φJ∆̂p1(t)∆̂p

T

N (t)JT

...
. . .

...

σ2
φJ∆̂pN (t)∆̂p

T

1 (t)JT . . . σ2
ρI2×2 +

(
σ2

φ + σ2
θ −

σ2
ρ

ρ̂2
N

(t)

)
J∆̂pN (t)∆̂p

T

N (t)JT




= σ2
ρI2N×2N + D(t)

(
σ2

θIN×N + σ2
φi

1N×N − diag

(
σ2

ρi

ρ2
i (t)

))
DT

(t)

= σ2
ρI2N×2N −D(t) diag

(
σ2

ρi

ρ2
i (t)

)
DT

(t)

︸ ︷︷ ︸
R1(t)

+ σ2
θi

D(t)DT
(t)︸ ︷︷ ︸

R2(t)

+ σ2
φi

D(t)1N×NDT
(t)︸ ︷︷ ︸

R3(t)

(60)

and

D(t) =




J∆̂p1(t) . . . 02×1

...
. . .

...
02×1 . . . J∆̂pN


 = Diag(J∆̂pi(t))

is a 2N×N block diagonal matrix, depending on the positions of the robot and landmarks. In the previous expression,
the covariance term R1(t) is the covariance of the error due to the noise in the range measurements, R2(t) is the
covariance term due to the error in the bearing measurements, and R3(t) is the covariance term due to the error in
the orientation estimates of the robot. We are now able to compute the matrix HT (t)R−1(t)H(t), that appears in the
covariance update equations of the Kalman Filter. Substitution from Eqs. (53) and (59) results in the terms depending
on the robot’s orientation being canceled, i.e.,

HT
(t)R−1

(t)H(t) = HT
o R−1

o (t)Ho

It is interesting to observe that since the matrix Ro(t) does not depend on the orientation of the robot, the matrix
HT (t)R−1(t)H(t) depends only on the positions of the robot and landmarks.

2.3 The Riccati Differential Equation
The results presented in the preceding sections allow us to derive the Riccati differential equation that describes the
time evolution of the covariance matrix in SLAM. This is

Ṗ(t) = Q(t)−P(t)HT
(t)R−1

(t)H(t)P(t)

= Q(t)−P(t)HT
o R−1

o (t)HP(t) (61)

It becomes evident that this is a time-varying Riccati equation, and therefore no closed form solution for it can be
found in the general case of the robot’s motion. However, the following lemma allows us to derive an upper bound on
the covariance of the position estimates:

Lemma 2.1 If the matrices R̄ and Q̄ satisfy R̄ º Ro(t) and Q̄ º Q(t) for all t > 0, then the solution to the Riccati
differential equation

˙̄P(t) = Q̄− P̄(t)HT
o R̄−1HoP̄(t) (62)

is an upper bound to the solution of the Riccati equation in Eq. (61), i.e., it satisfies P̄(t) º P(t) for all t > 0, when
the initial values of the two differential equations are equal.
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The proof of this lemma is given in Appendix C. We now compute upper bounds on the matrices Q(t) and Ro(t),
that will be used in order to formulate a constant coefficient Riccati differential equation for the upper bound on the
positioning covariance.

In order to derive an upper bound for the system noise covariance matrix Q(t) we note that (cf. Eqs. (49) and (46))

Q(t) =
[

Qr(t) 02×2N

02N×2 02N×2N

]
=


 C(φ̂(t))

[
δt2σ2

V 0
0 δt2V 2

m(t)σ2
φ

]
CT (φ̂(t)) 02×2N

02N×2 02N×2N




From the properties of rotation matrices it is known that C−1(φ̂(t)) = CT (φ̂(t)), and thus Qr(t) is related by a
similarity transformation to the matrix [

δt2σ2
V 0

0 δt2V 2
m(t)σ2

φ

]

which implies that the eigenvalues of Qr(t) are δt2σ2
V and δt2V 2

m(t)σ2
φ. We assume that the robot’s velocity is approx-

imately constant, and equal to V , and denote

q̄ = max
(
δt2σ2

V , δt2V 2
m(t)σ2

φ

) ' max
(
δt2σ2

V , δt2V 2σ2
φ

)
(63)

This definition states that q̄ is the largest eigenvalue of Qr(t), and therefore

Qr(t) ¹ q̄I2×2 ⇒ Q(t) ¹
[

q̄I2×2 02×2N

02N×2 02N×2N

]
= Q̄ (64)

We next derive an upper bound for Ro by considering each of its terms separately: the term expressing the effect of
the noise in the range measurements is

R1(t) = σ2
ρI2N×2N −D(t) diag

(
σ2

ρ

ρ̂2
i

)
DT

(t) ¹ σ2
ρI2N×2N (65)

The last matrix inequality follows from the fact that the term being subtracted from σ2
ρI2N×2N is a positive semidefinite

matrix. The covariance term due to the noise in the bearing measurement is

R2(t) = σ2
θD(t)DT

(t)

= σ2
θDiag

(
ρ̂2

i (t)

[
sin2(θ̂i(t)) sin(θ̂i(t)) cos(θ̂i(t))

sin(θ̂i(t)) cos(θ̂i(t)) cos2(θ̂i(t))

])

¹ σ2
θDiag

(
ρ̂2

i (t)I2×2

)

¹ σ2
θρ2

oI2N×2N (66)

where ρo is the maximum possible distance between the robot and any landmark. Finally, the covariance term due to
the error in the orientation of the robot is R3(t) = σ2

φi
D(t)1N×NDT (t). Calculation of the eigenvalues of the matrices

1N×N and IN×N verifies that 1N×N ¹ NIN×N , and thus we can write R3(t) ¹ Nσ2
φD(t)DT (t). By derivations

analogous to those employed to yield an upper bound for R2(t), we can show that

R3(t) ¹ Nσ2
φρ2

oI2N×2N

By combining this result with those of Eqs. (65), (66), we can write Ro(t) = R1(t) + R2(t) + R3(t) ¹ R̄, where

R̄ =
(
σ2

ρ + Nσ2
φρ2

o + σ2
θρ2

o

)
I2N×2N = rI2N×2N (67)

with
r = σ2

ρ + Nσ2
φρ2

o + σ2
θρ2

o (68)

We can therefore formulate the following Riccati differential equation for the upper bound on the positioning
accuracy of SLAM:

˙̄P(t) = Q̄− P̄(t)HT
o R̄−1HoP̄(t)

= qQ̄n − 1
r
P̄(t)HT

o HoP̄(t) (69)
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with

Q̄n =
[

I2×2 02×2N

02N×2 02N×2N

]
=

[
1 01×N

0N×1 0N×N

]
⊗ I2×2

The initial value for the covariance of SLAM is assumed to be equal to:

P(0) =
[

Prro
02×2N

02N×2 PLLo

]
(70)

in other words, we assume that the initial position estimates for the for the robot are uncorrelated from the map features’
position estimates. Additionally, in order to simplify the derivations that follow, we assume that PLLo is an invertible
matrix. These assumptions are not necessary in order to derive a solution. By following steps analogous to the 1D
case, a solution for the most general case can be derived. However, as the analysis of the 1D problem demonstrates,
the resulting expressions are too cumbersome. Moreover, in most practical cases the aforementioned assumptions are
met, and therefore, we will employ them in the ensuing analysis, in order to provide simpler and more intuitive results.

2.4 Upper Bound on the Steady State Covariance Matrix
We now focus on deriving the asymptotic solution to the Riccati differential equation in Eq. (69), in order to char-
acterize the steady state performance of SLAM. The analysis is simplified by introducing the normalized covariance
matrix:

Pn(t) =
1
q̄
P̄(t)

which leads to the following Riccati differential equation:

Ṗn(t) = Q̄n − q̄

r
Pn(t)HT

o HoPn(t) (71)

= Q̄n −Pn(t)CPn(t) (72)

with initial condition

Pn(0) =
1
q̄
P(0) =

1
q̄

[
Prro 02×2N

02N×2 PLLo

]

In the last expression the matrix C is defined as

C =
q̄

r
HT

o Ho

=
[

Nq̄
r I2×2 − q̄

rJ
T

− q̄
rJ

q̄
r I2N×2N

]
(73)

where
J = 1N×1 ⊗ I2×2

At this point we note that the matrix C is singular. Analytical evaluation of its eigenvalues shows that zero is an
eigenvalue of C with multiplicity 2, and thus rank(C) = 2N .

The solution to the Riccati equation in Eq. (71) is obtained by a derivation process analogous to that employed in
the 1D case. Specifically, we note that the eigendecomposition of the matrix CQ̄n is written as:

CQ̄n = UΛoU−1 =
[

I2×2 02×2N

− 1
N J I2N×2N

] [
ρ2I2×2 02×2N

02N×2 02N×2N

] [
I2×2 02×2N
1
N r I2N×2N

]
(74)

where we have denoted
ρ2 =

Nq̄

r
,

U is the matrix comprising of the eigenvectors of CQ̄n as its column vectors, and Λo is the matrix of eigenvalues of
CQ̄n. The solution to the Riccati differential equation in Eq. (71) is derived by forming the Hamiltonian matrix, and
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evaluating its exponential function. The derivations are analogous to the 1D case, and therefore we directly present the
final form of the solution:

Pn(t) = U−T Q̄nL(t)K−1
(t)U−1 + U−T M(t)U−1

= Pa(t) + Pb(t) (75)

where we have denoted

K(t) =
[

eρt+e−ρt

2 I2×2 02×2N

02×2N I2N×2N

]

and

L(t) =

[
1
ρ

eρt−e−ρt

2 I2×2 02×2N

02×2N t I2N×2N

]

while the matrix M(t) is equal to

M(t) = K−1
(t)UT Pn(0)U(K(t) + U−1CU−T L(t)UT Pn(0)U)−1 (76)

In order to derive an upper bound on the steady state uncertainty of the position estimates in SLAM, we need to
evaluate the asymptotic value towards which the solution in Eq. (75) converges. To this end, we evaluate the limits of
the quantities Pa(t) and Pb(t) as t → ∞. The derivations are once again similar to those employed in the 1D case.
Specifically, the limit of the term Pa(t) is equal to

lim
t→∞

Pa(t) = lim
t→∞

U−T Q̄nL(t)K−1
(t)U−1 (77)

=
[ 1

ρI2×2 02×2N

02×2N 02N×2N

]
(78)

The limit of the second term in Eq. (75) is equal to

lim
t→∞

Pb(t) = lim
t→∞

U−T M(t)U−1

= U−T
(

lim
t→∞

M(t)

)
U−1 (79)

where (cf. Eq. (76))

lim
t→∞

M(t) = lim
t→∞

K−1
(t)UT Pn(0)U

(
I(2N+2)×(2N+2) + K−1

(t)U−1CU−T L(t)UT Pn(0)U
)−1

K−1
(t)

= lim
t→∞

K−1
(t)UT Pn(0)

(
U−1 + K−1

(t)U−1CU−T L(t)UT Pn(0)
)−1

K−1

= lim
t→∞

K−1
(t)UT Pn(0)

(
I(2N+2)×(2N+2) + UK−1

(t)U−1CU−T L(t)UT Pn(0)
)−1

UK−1
(t)

= lim
t→∞

K−1
(t)UT Ξ(t)UK−1

(t)

where
Ξ(t) = Pn(0)

(
I(2N+2)×(2N+2) + UK−1

(t)U−1CU−T L(t)UT Pn(0)
)−1

(80)

But we note that

lim
t→∞

K−1UT = lim
t→∞

(UK−1)T

= lim
t→∞

[
2

eρt+e−ρt I2×2 02×2N

02×2N I2N×2N

] [
I2×2 − 1

N JT

02N×2 I2N×2N

]

=
[

02×2 02×2N

02×2N I2N×2N

]

Therefore we can write

lim
t→∞

M(t) =
[

02×2 02×2N

02×2N I2N×2N

] (
lim

t→∞
Ξ(t)

) [
02×2 02×2N

02×2N I2N×2N

]
(81)
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At this point we introduce the following partitioning of the matrix Ξ(t):

Ξ(t) =
[

Ξ11(t) Ξ12(t)

Ξ21(t) Ξ22(t)

]
=

[
2× 2 2× 2N

2N × 2 2N × 2N

]

And therefore

lim
t→∞

M(t) =
[

02×2 02×2N

02×2N Ξ22(t)

]
(82)

From this expression we conclude that in order to find the steady state value of the term Pb(t), only the limit of the
(2,2) submatrix element of Ξ(t) is necessary.

Carrying out the matrix multiplication we obtain

UK−1
(t)U−1CU−T L(t)UT =

[
α(t)ρI2×2 −α(t)ρ

N JT

−α(t)ρ
N J α(t)ρ

N JJT + t A

]
(83)

where

α(t) =
eρt − e−ρt

eρt + e−ρt

and A is a 2N × 2N constant matrix, given by

A =
r

q̄
I2N×2N − r

Nq̄
JJT

Similarly to the 1D case, A is the Schur complement of ρ2I2×2 in C, and the following property holds:

rank(C) = rank(A) + rank(ρ2I2×2) ⇒ rank(A) = 2N − 2

Thus A is rank deficient, and it is easy to see that AJ = 02N×2, which implies that the column vectors of the matrix
VN = 1√

N
J form a basis of the nullspace of A.

Using the expression of Eq. (83), Ξ(t) can be expressed as

Ξ(t) =
1
q̄

[
Prro 02×2N

02N×2 PLLo

] (
I(2N+2)×(2N+2) +

1
q̄

[
α(t)ρI2×2 −α(t)ρ

N JT

−α(t)ρ
N J α(t)ρ

N JJT + t A

] [
Prro 02×2N

02N×2 PLLo

])−1

=
1
q̄

[
Prro 02×2N

02N×2 PLLo

] 
 I2×2 + α(t)ρ

q̄ Prro −α(t)ρ
Nq̄ JT PLLo

−α(t)ρ
Nq̄ JPrro I2N×2N + 1

q̄

(
α(t)ρ

N JJT + t A
)
PLLo



−1

=
1
q̄

[
Prro 02×2N

02N×2 PLLo

] [
P1 P2

P3 P4

]−1

=
[

Ξ11(t) Ξ12(t)

Ξ21(t) Ξ22(t)

]
(84)

Using the formula for the inversion of a partitioned matrix, given in Appendix D, and carrying out the matrix multi-
plication yields the following expression for Ξ22(t):

Ξ22(t) =
1
q̄
PLLo(P4 −P3P−1

1 P2)−1

Substitution of the values of matrices P1, P2, P3, and P4, defined in Eq. (84), and simple algebraic manipulation
yields the following expression for Ξ22(t):

Ξ22(t) =
1
q̄
PLLo

(
1
q̄
APLLot + I2N×2N +

α(t)ρ

N2q̄
J

(
I2×2 +

α(t)ρ

q̄
Prro

)−1

JT PLLo

)−1
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A this point we assume that PLLo
is invertible, in order to simplify the derivations, although this is clearly not

necessary for deriving a closed form solution, as the 1D analysis demonstrates. With this assumption the preceding
expression can be written as

Ξ22(t) =

(
At + q̄P−1

LLo
+

α(t)ρ

N2
J

(
I2×2 +

α(t)ρ

q̄
Prro

)−1

JT

)−1

The steady state value of this matrix can be computed by application of Lemma 1.1. Specifically, A is singular and
VN = 1√

N
J is the matrix whose columns comprise the basis of its nullspace. Moreover,

lim
t→∞

(
q̄P−1

LLo
+

α(t)ρ

N2
J

(
I2×2 +

α(t)ρ

q̄
Prro

)−1

JT

)
= q̄P−1

LLo
+

ρ

N2
J

(
I2×2 +

ρ

q̄
Prro

)−1

JT

and thus

lim
t→∞

Ξ22(t) = VN

(
q̄VT

NP−1
LLo

VN +
ρ

N2
VT

NJ
(

I2×2 +
ρ

q̄
Prro

)−1

JT VN

)−1

VN

= J

(
q̄JT P−1

LLo
J +

ρ

N2
JT J

(
I2×2 +

ρ

q̄
Prro

)−1

JT J

)−1

J

But JT J = NI2×2 and thus

lim
t→∞

Ξ22(t) = J

(
q̄JT P−1

LLo
J + ρ

(
I2×2 +

ρ

q̄
Prro

)−1
)−1

J

= 1N×N ⊗
(

q̄JT P−1
LLo

J + ρ

(
I2×2 +

ρ

q̄
Prro

)−1
)−1

= 1N×N ⊗
(

q̄JT P−1
LLo

J + ρ

(
I2×2 +

ρ

q̄
Prro

)−1
)−1

=
1
q̄
1N×N ⊗

(
JT P−1

LLo
J +

(
q̄

ρ
I2×2 + Prro

)−1
)−1

=
1
q̄
1N×N ⊗


JT P−1

LLo
J +

(√
q̄r

N
I2×2 + Prro

)−1


−1

Substitution of this result in Eq. (82) and evaluation of the asymptotic value of the matrix Pb(t) in Eq. (79) yields

lim
t→∞

Pb(t) =
1
q̄
1(N+1)×(N+1) ⊗


JT P−1

LLo
J +

(√
q̄r

N
I2×2 + Prro

)−1


−1

The steady state value of Pn(t) is therefore equal to

Pnss = lim
t→∞

Pn(t)

= lim
t→∞

(Pa(t) + Pb(t))

=
[ 1

ρI2×2 02×2N

0N×2 02N×2N

]
+

1
q̄
1(N+1)×(N+1) ⊗


JT P−1

LLo
J +

(√
q̄r

N
I2×2 + Prro

)−1


−1

(85)

Finally, the upper bound on the steady state covariance matrix is given by P̄ss = q̄Pnss . Therefore, we can state the
following lemma:
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Lemma 2.2 For Simultaneous Localization and Mapping (SLAM) in 2D, the upper bound on the steady state covari-
ance matrix of the position estimates is

P̄ss =

[ √
q̄r
N I2×2 02×2N

0N×2 02N×2N

]
+ 1(N+1)×(N+1) ⊗


JT P−1

LLo
J +

(√
q̄r

N
I2×2 + Prro

)−1


−1

(86)

where Prro is the initial covariance of the robot’s position estimate, PLLo is the initial map covariance matrix,
J = 1N×1 ⊗ I2×2, and the quantities q̄ and r are defined in Eqs. (63) and (68) respectively.

We note at this that by employing the assumption that the position estimates for the robot and the map features are
initially uncorrelated, a considerably simpler expression has been derived, compared to the 1D analysis, in which this
assumption was not imposed. We now apply this result to two cases of interest:

• Initially Unknown Map

In SLAM it is usually assumed that the robot starts operating in a totally unknown area. In such cases, the robot can
arbitrarily define the origin of the global coordinate frame, and the initial uncertainty about its position is zero. Since
no information about the landmarks’ positions is available, the uncertainty about the landmarks’ positions is infinite.
Setting Prr0 = 02×2 and PLL0 = µI2N×2N , µ → ∞ in Eq. (86) results in the following expression for the upper
bound of the positioning uncertainty in SLAM, when the robot maps an initially unknown area:

Pss ¹ P̄ss =

√
q̄r

N

[
2 11×N

01N×1 1N×N

]
⊗ I2×2 (87)

• Known Landmark Density

The expression in Eq. (87) provides an upper bound on the worst-case performance of SLAM, under any possi-
ble placement of the landmarks in space. However, when the features of the environment to be treated as landmarks
are selected (e.g., visual features, prominent geometric features), it is beneficial to choose them so that they are abun-
dant in the environment and evenly distributed throughout it. This way, a more detailed map of an area can be created.
In such cases, the density of landmarks in the environment can be a priori modeled, for example, by a uniform prob-
ability density function (pdf), and this information can be exploited in order to compute a tighter upper bound for
the expected steady state covariance of the position estimates. Specifically, assuming the initial covariance matrix of
the map (before any observations) is PLL0 = µI2N×2N , µ → ∞, while the robot has perfect knowledge about its
position, the covariance matrix right after the first landmark observations, and before the robot moves, will be given
by

P(0+) = P(0)−P(0)HT
o

(
HoP(0)HT

o + Ro(0)
)−1

HoP(0)

=
[

02×2 02×2N

02N×2 µI2N×2N

]
−

[
02×2N

µI2N×2N

]
(µI2N×2N + Ro(0))−1 [

02N×2 µI2N×2N

]

=
[

02×2 02×2N

02N×2 µI2N×2N − µ (µI2N×2N + Ro(0))−1
µ

]

=

[
02×2 02×2N

02N×2

(
1
µ + R−1

o (0)
)−1

]

and evaluating the limit as µ →∞ yields

P(0+) =
[

02×2 02×2N

02N×2 Ro(0)

]
(88)

We now employ this matrix as the initial value in SLAM, and therefore the upper bound for the steady state covariance
matrix, for a given initial position of the robot and landmark placement, is given by

P̄ss =

[ √
q̄r
N I2×2 02×2N

0N×2 02N×2N

]
+ 1(N+1)×(N+1) ⊗

(
JT Ro(0)−1J +

√
N

q̄r
I2×2

)−1

(89)
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In Appendix G it is shown that Ro(0)−1 can be calculated in closed form, and this allows us to evaluate the bound in
closed form as well. Use of Eq. (103) yields

JT Ro(0)−1J = S1 + S2 + S3

where

S1 = JT 1
σ2

ρ




∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . ∆̂pN


diag

(
1
ρ̂2

i

)



∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . ∆̂pN




T

J

= JT 1
σ2

ρ




∆̂x1∆̂x1
ρ̂2
1

∆̂x1∆̂y1
ρ̂2
1

· · · 0 0
∆̂y1∆̂x1

ρ̂2
1

∆̂y1∆̂y1
ρ̂2
1

· · · 0 0
...

...
. . .

...
...

0 0 · · · ∆̂xN ∆̂xN

ρ̂2
1

∆̂xN ∆̂yN

ρ̂2
1

0 0 · · · ∆̂yN ∆̂xN

ρ̂2
1

∆̂yN ∆̂yN

ρ̂2
1




J

=
1
σ2

ρ




∑N
i=1

∆̂xi
2

ρ̂2
i

∑N
i=1

∆̂xi∆̂yi

ρ̂2
i∑N

i=1
∆̂xi∆̂yi

ρ̂2
i

∑N
i=1

∆̂yi
2

ρ̂2
i




and

S2 = JT 1
σ2

θ




J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . J∆̂pN


diag

(
1
ρ̂4

i

)



J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . J∆̂pN




T

J

= JT 1
σ2

θ




∆̂y1∆̂y1
ρ̂4
1

− ∆̂x1∆̂y1
ρ̂4
1

· · · 0 0

− ∆̂x1∆̂y1
ρ̂4
1

∆̂x1∆̂x1
ρ̂4
1

· · · 0 0
...

...
. . .

...
...

0 0 · · · ∆̂yN ∆̂yN

ρ̂4
1

− ∆̂xN ∆̂yN

ρ̂4
1

0 0 · · · − ∆̂xN ∆̂yN

ρ̂4
1

∆̂xN ∆̂xN

ρ̂4
1




J

=
1
σ2

θ




∑N
i=1

∆̂yi
2

ρ̂4
i

−∑N
i=1

∆̂xi∆̂yi

ρ̂4
i

−∑N
i=1

∆̂xi∆̂yi

ρ̂4
i

∑N
i=1

∆̂xi
2

ρ̂4
i




and

S3 = −JT 1
σ2

η




1
ρ̂2
1
J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . 1

ρ̂2
N

J∆̂pN


1N×N




1
ρ̂2
1
J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . 1

ρ̂2
N

J∆̂pN




T

J

= −JT 1
σ2

η




1
ρ̂2
1
J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . 1

ρ̂2
N

J∆̂pN


1N×111×N




1
ρ̂2
1
J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . 1

ρ̂2
N

J∆̂pN




T

J

= − 1
σ2

η

[
a1

a2

] [
a1 a2

]
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where

[
a1

a2

]
= JT 1

σ2
η




1
ρ̂2
1
J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . 1

ρ̂2
N

J∆̂pN


1N×1

=


 −∑N

i=1
∆̂yi

ρ̂2
i∑N

i=1
∆̂xi

ρ̂2
i




and therefore

S3 = − 1
σ2

η




(∑N
i=1

∆̂yi

ρ̂2
i

)2

−∑N
i=1

∆̂xi

ρ̂2
i

∑N
i=1

∆̂yi

ρ̂2
i

−∑N
i=1

∆̂xi

ρ̂2
i

∑N
i=1

∆̂yi

ρ̂2
i

(∑N
i=1

∆̂xi

ρ̂2
i

)2




We can thus write

JT Ro(0)−1J +

√
N

q̄r
I2×2 =

1
σ2

ρ




∑N
i=1

∆̂xi
2

ρ̂2
i

∑N
i=1

∆̂xi∆̂yi

ρ̂2
i∑N

i=1
∆̂xi∆̂yi

ρ̂2
i

∑N
i=1

∆̂yi
2

ρ̂2
i


 +

1
σ2

θ




∑N
i=1

∆̂yi
2

ρ̂4
i

−∑N
i=1

∆̂xi∆̂yi

ρ̂4
i

−∑N
i=1

∆̂xi∆̂yi

ρ̂4
i

∑N
i=1

∆̂xi
2

ρ̂4
i




− 1
σ2

η




(∑N
i=1

∆̂yi

ρ̂2
i

)2

−∑N
i=1

∆̂xi

ρ̂2
i

∑N
i=1

∆̂yi

ρ̂2
i

−∑N
i=1

∆̂xi

ρ̂2
i

∑N
i=1

∆̂yi

ρ̂2
i

(∑N
i=1

∆̂xi

ρ̂2
i

)2


 +

√
N

q̄r
I2×2 (90)

and the inverse of this matrix is equal to

Θ =

(
JT Ro(0)−1J +

√
N

q̄r
I2×2

)−1

=
1

detA
A, with A =

[
α β
β γ

]
(91)

and

α =
N∑

i=1

∆̂y2
i

σ2
ρρ̂2

i

+
N∑

i=1

∆̂x2
i

σ2
θ ρ̂4

i

−
(

N∑

i=1

∆̂xi

σηρ̂2
i

)2

+

√
N

q̄r

β = −
N∑

i=1

∆̂xi∆̂yi

σ2
ρρ̂2

i

+
N∑

i=1

∆̂xi∆̂yi

σ2
θ ρ̂4

i

−
N∑

i=1

∆̂xi

σηρ̂2
i

N∑

i=1

∆̂yi

σηρ̂2
i

γ =
N∑

i=1

∆̂xi

2

σ2
ρρ̂2

i

+
N∑

i=1

∆̂yi

2

σ2
θ ρ̂4

i

−
(

N∑

i=1

∆̂yi

σηρ̂2
i

)2

+

√
N

q̄r

We note that the upper bound on the steady state covariance matrix can be computed as a closed-form function of
the initial position of the robot, and the positions of the landmarks. Our prior knowledge about the density of the
landmarks can be incorporated in the analysis by treating the position of the robot and landmarks as random variables
with a known probability distribution function. In this context P̄ss is a function of random variables, and therefore its
mean can be trivially computed with a Monte Carlo method. We note that Pss ¹ P̄ss ⇒ E{Pss} ¹ E{P̄ss}, which
implies that the average value of P̄ss is an upper bound on the expected covariance of the position estimates in SLAM.
We can thus state the following lemma:

Lemma 2.3 The maximum expected steady state covariance of the position estimates in SLAM, when the spatial
density of landmarks is described by a known pdf, is given by

E{Pss} ¹
[ √

qr
N I2×2 02×2N

02N×2 02N×2N

]
+ 1(N+1)×(N+1) ⊗ E{Θ}

where Θ can be computed using Eq. (91).
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A Appendix: Taylor Series Expansion of the Hyperbolic Sine and Cosine
Functions

The Taylor series expansion of the exponential function is given by:

eat = Σ∞k=0

aktk

k!
= 1 +

at

1!
+

a2t2

2!
+

a3t3

3!
+

a4t4

4!
+ · · ·

The above relation, when substituting −t instead of t yields:

e−at = Σ∞k=0

ak(−t)k

k!
= 1− at

1!
+

a2t2

2!
− a3t3

3!
+

a4t4

4!
− · · ·

Thus, by subtracting and adding the previous two relations, we get:

eat + e−at

2
= 1 +

1
2!

a2t2 +
1
4!

a4t4 + · · ·

and
eat − e−at

2
=

1
1!

at +
1
3!

a3t3 +
1
5!

a5t5 + · · ·
The last two functions are the hyperbolic cosine and sine respectively.

B Proof of Lemma 1.1
We denote the SVD of the N ×N matrix Y (t) as

Y (t) = W (t)Λ(t)ZT
(t)

= [W1(t) WN (t)]
[

Λ1(t) 0r × p
0r × p 0p× p

]
[Z1(t) ZN (t)]T

where r is the rank of Y (t), p = N − r Λ1(t) is the diagonal matrix of nonzero singular values of Y (t), the columns of
ZN (t) form a basis for the nullspace of Y (t), and the columns of WN (t) constitute a basis for the nullspace of Y (t)T .
We are also assuming that the limit of Y (t) as t →∞ exists, and satisfies

Y (∞) = W (∞)Λ(∞)ZT (∞)

= [W1(∞) WN (∞)]
[

Λ1(∞) 0r × p
0r × p 0p× p

]
[Z1(∞) ZN (∞)]T

With this notation we write

(Y (t)t + IN×N )−1 = (W (t)Λ(t)ZT
(t)t + IN×N )−1

= (Λ(t)ZT
(t)t + W (t)

T )−1W (t)
T

= Z(t)(Λ(t)t + W (t)
T Z(t))−1W (t)

T

=
[

Z1(t) ZN (t)
] ([

Λ1(t)t 0r×p

0p×r 0p×p

]
+

[
W1(t)T

WN (t)T

] [
Z1(t) ZN (t)

])−1 [
W1(t)T

WN (t)T

]

=
[

Z1(t) ZN (t)
] [

Λ1(t)t + W1(t)T Z1(t) W1(t)T ZN (t)

WN (t)T Z1(t) WN (t)T ZN (t)

]−1 [
W1(t)T

WN (t)T

]

=
[

Z1(t) ZN (t)
] [

A1(t) A2(t)

A3(t) A4(t)

] [
W1(t)T

WN (t)T

]
(92)
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Employing the formula for the inversion of a partitioned matrix (cf. Appendix D) yields the following expressions for
each of the elements Ai(t), i = 1, 2, 3, 4:

A1(t) =
(
Λ1(t)t + W1(t)

T Z1(t)−W1(t)
T ZN (t)

(
WN (t)

T ZN (t)
)−1

WN (t)
T Z1(t)

)−1

A2(t) = −A1W1(t)
T ZN (t)

(
WN (t)

T ZN (t)(t)
)−1

A3(t) = − (
WN (t)

T ZN (t)(t)
)−1

WN (t)
T Z1(t)A1(t)

A4(t) =
(
WN (t)

T ZN (t)−WN (t)
T Z1(t)

(
Λ1(t)t + W1(t)

T Z1(t)
)−1

W1(t)
T ZN (t)

)−1

Computation of the limits of these matrices as t →∞ is now possible. We have

lim
t→∞

A1(t) =
(
Λ1(t)t + W1(t)

T Z1(t)−W1(t)
T ZN (t)

(
WN (t)

T ZN (t)
)−1

WN (t)
T Z1(t)

)−1

= lim
t→∞

1
t

(
Λ1(t) +

1
t
W1(t)

T Z1(t)−W1(t)
T ZN (t)

(
WN (t)

T ZN (t)
)−1

WN (t)
T Z1(t)

)−1

=
(

lim
t→∞

1
t

) (
lim

t→∞

(
Λ1(t) +

1
t
W1(t)

T Z1(t)−W1(t)
T ZN (t)

(
WN (t)

T ZN (t)
)−1

WN (t)
T Z1(t)

)−1
)

=
(

lim
t→∞

1
t

)
Λ1(∞)−1

= 0r×r

And therefore we also obtain
lim

t→∞
A2(t) = lim

t→∞
AT

3 (t) = 0r×p

Finally

lim
t→∞

(
Λ1(t)t + W1(t)

T Z1(t)
)−1

= lim
t→∞

1
t

(
Λ1(t) +

1
t
W1(t)

T Z1(t)

)−1

= 0r×r

and therefore

lim
t→∞

A4(t) = (WN (∞)T ZN (∞))−1

Substitution in Eq. (92) yields

lim
t→∞

(Y (t)t + IN×N )−1 =
[

Z1(∞) ZN (∞)
] [

0r×r 0r×p

0p×r (WN (∞)T ZN (∞))−1

] [
W1(∞)T

WN (∞)T

]

= ZN (∞)(WN (∞)T ZN (∞))−1WN (t)
T (93)

which is the desired result.

C Poof of Lemma 2.1
The proof of this lemma is based on the following theorem (adapted from [4]):

Theorem C.1 For each covariance matrix Po, “input” matrix

Eo =
[

Q −FT

−F −C

]

and time instant to there exists an interval (to−a, to+a), a neighborhood of Po and Eo and a unique infinitely Frechet
differentiable function P (Po, Eo), such that
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• P is the unique solution of the Riccati differential equation

Ṗ (t) = FP (t) + P (t)FT + Q(t)− P (t)C(t)P (t), P (to) = Po (94)

• For given Eo the function P (Po, E) is monotonically increasing.

We now note that from Eq. (61) we obtain

P̄(t) = P̄(0) +
∫ t

0

(
Q̄− P̄(t)HT

o R̄−1HoP̄(t)
)
dt (95)

But P̄(0) = P(0), and additionally R̄ º Ro(t) and Q̄ º Q(t) for all t > 0. Therefore,

P̄(t) = P(0) +
∫ t

0

(
Q̄− P̄(t)HT

o R̄−1HoP̄(t)
)
dt

º P(0) +
∫ t

0

(
Q(t)− P̄(t)HT

o Ro(t)
−1HoP̄(t)

)
dt

= P(0) + lim
∆t→0

t/∆t∑

k=0

(
Q(k∆t)− P̄(k∆t)HT

o Ro(k∆t)−1HoP̄(k∆t)
)
∆t (96)

For sufficiently small ∆t, the preceding theorem holds within each of the intervals in the sum of Eq. (96). Applying
induction and Theorem C.1 is easy to show that for all k > 0,

P̄(t) º P(0) + lim
∆t→0

t/∆t∑

k=0

(
Q(k∆t)−P(k∆t)HT

o Ro(k∆t)−1HoP(k∆t)
)
∆t

= P(0) + lim
∆t→0

t/∆t∑

k=0

Ṗ(k∆t)∆t

= P(0) +
∫ t

0

Ṗ(t)dt

= P(0)

D Inversion of a Partitioned Matrix
Let a (m + n)× (m + n) matrix K be partitioned as

K =
[

A B
C D

]

Where the m×m matrix A and the n× n matrix D are invertible. Then the inverse matrix of K can be written as
[

X Y
Z U

]
=

[
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
(97)

E Continuous Time Riccati Equation
For a linear continuous time system, where the state measurements are available continuously, the state model equa-
tions are

ẋ(t) = F (t)x(t) + B(t)u(t) + G(t)w(t) (98)
z(t) = H(t)x(t) + n(t) (99)
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where u(t) is the input to the system, w(t) is the dynamic driving noise process having covariance Q(t), n(t) is the
measurement noise process, with covariance R(t), F (t) is the matrix describing the dynamic behavior of the states,
B(t) is the matrix describing the affect of the inputs on the states, and H(t) is the measurement matrix.

The continuous time Riccati equation, describing the evolution of the state covariance is

Ṗ = FP + PFT + GQGT − PHT R−1HP (100)

where the time indices have been dropped for simplicity.

F Matrix Inversion Lemma
If A is n× n, B is n×m, C is m×m and D is m× n then:

(A−1 + BC−1D)−1 = A−AB(DAB + C)−1DA (101)

G Calculation of R−1
o

From Eq. (60), it is:

Ro =




σ2
ρI2×2 +

(
σ2

φ + σ2
θ −

σ2
ρ

ρ̂2
1

)
J∆̂p1∆̂p

T

1 JT .. σ2
φJ∆̂p1∆̂p

T

NJT

...
. . .

...

σ2
φJ∆̂pN ∆̂p

T

1 JT .. σ2
ρI2×2 +

(
σ2

φ + σ2
θ −

σ2
ρ

ρ̂2
N

)
J∆̂pN ∆̂p

T

NJT




= σ2
ρI2N×2N + D

(
σ2

θIN×N + σ2
φ1N×N − diag

(
σ2

ρ

ρ2
i

))
DT

= σ2
ρI2N×2N + D

(
Ξ− diag

(
σ2

ρ

ρ2
i

))
DT

where

D =




J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . J∆̂pN


 and Ξ = σ2

θIN×N + σ2
φ1N×N

Employing the matrix inversion lemma (cf. Appendix F), the inverse of Ro can be written as:

R−1
o =

(
σ2

ρI2N×2N + D

(
Ξ− diag

(
σ2

ρ

ρ2
i

))
DT

)−1

=
1
σ2

ρ

I2N×2N − 1
σ4

ρ

D




(
Ξ− diag

(
σ2

ρ

ρ2
i

))−1

+
1
σ2

ρ

DT D



−1

DT

=
1
σ2

ρ

I2N×2N − 1
σ4

ρ

D




(
Ξ− diag

(
σ2

ρ

ρ2
i

))−1

+ diag
(

ρ̂2
i

σ2
ρ

)

−1

DT

where the last line follows from the definition of matrix D. By applying the matrix inversion lemma once more we
have

(
− diag

(
σ2

ρ

ρ̂2
i

)
+ Ξ

)−1

= − diag

(
σ2

ρ

ρ̂2
i

)−1

− diag

(
σ2

ρ

ρ̂2
i

)−1

Ξ−1 − diag

(
σ2

ρ

ρ̂2
i

)−1


−1

diag

(
σ2

ρ

ρ̂2
i

)−1
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and substitution in Eq. (102) yields

R−1
o =

1
σ2

ρ

I2N×2N − 1
σ4

ρ

D


−diag

(
σ2

ρ

ρ2
i

)−1

Ξ−1 − diag

(
σ2

ρ

ρ̂2
i

)−1


−1

diag

(
σ2

ρ

ρ2
i

)−1



−1

DT

=
1
σ2

ρ

I2N×2N + D diag
(

1
σ2

ρ

) 
Ξ−1 − diag

(
σ2

ρ

ρ̂2
i

)−1

 diag

(
1
σ2

ρ

)
DT

=
1
σ2

ρ

I2N×2N − 1
σ2

ρ

D diag
(

1
ρ̂2

i

)
DT + D diag

(
1
ρ̂2

i

)
Ξ−1 diag

(
1
ρ̂2

i

)
DT

we note that J∆̂pi∆̂p
T

i JT = ρ̂2
i I2×2 − ∆̂pi∆̂p

T

i , and therefore the above expression can be written as

R−1
o =

1
σ2

ρ




∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . ∆̂pN


 diag

(
1
ρ̂2

i

)



∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . ∆̂pN




T

+




J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . J∆̂pN


 diag

(
1
ρ̂2

i

) (
σ2

θIN×N + σ2
φ1N×N

)−1
diag

(
1
ρ̂2

i

)



J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . J∆̂pN




T

(102)

But application of the matrix inversion lemma yields
(
σ2

θIN×N + σ2
φ1N×N

)−1
=

(
σ2

θIN×N + σ2
φ1N×111×N

)−1

=
1
σ2

θ

IN×N − 1
σ4

θ

1N×1

(
1
σ2

φ

+
N

σ2
θ

)−1

11×N

=
1
σ2

θ

IN×N − 1
σ2

η

1N×N

where

σ2
η =

σ4
θ

σ2
φ

+ Nσ2
φ

Hence, R−1
o can be written in its final form as

R−1
o =

1
σ2

ρ




∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . ∆̂pN


 diag

(
1
ρ̂2

i

)



∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . ∆̂pN




T

+
1
σ2

θ




J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . J∆̂pN


 diag

(
1
ρ̂4

i

)



J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . J∆̂pN




T

− 1
σ2

η




J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . J∆̂pN


 diag

(
1
ρ̂2

i

)
1N×N diag

(
1
ρ̂2

i

)



J∆̂p1 . . . 02×1

...
. . .

...
02×1 . . . J∆̂pN




T

(103)
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