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Abstract—In this work, we study the inconsistency of EKF- simulation results, that the uncertainty in the robot orientation
based SLAM from the perspective of observability. We analyti- js the main cause of the inconsistency of EKF-SLAM. The
cally prove that when the Jacobians of the state and measurement . of [5] further confirmed the empirical findings in [2]

models are evaluated at the latest state estimates during every . . - .
time step, the linearized error-state system model of the EKF- and argued by example that in EKF-SLAM the inconsistency is

based SLAM has observable subspace of dimension higher than always in the form of overconfident estimates (i.e., computed
that of the actual, nonlinear, SLAM system. As a result, the covariances smaller than the actual ones).

covariance estimates of the EKF undergo reduction in directions  The aforementioned works have described several symp-
of the state space where no information is available, which is {yms of inconsistency that appear in the standard EKF-SLAM.

a primary cause of inconsistency. To address this issue, a new . .
“First Estimates Jacobian® (FEJ) EKF is proposed, which is However, they have not conducted a detailed analysis into the

shown to perform better in terms of consistency. In the FEJ- €xact cause of the inconsistency (with the exception of [3]
EKF, the filter Jacobians are calculated using the first-ever for the special case of a stationary robot). In this paper,
available estimates for each state variable, which insures that we investigate in depth one of the fundamental causes of
the observable subspace of the error-state system model is ofincongistency. In particular, we revisit this problem from a new
the same dimension as that of the underlying nonlinear SLAM ti : b lvzing the ob bilit " f
system. The theoretical analysis is validated through extensive perSPec ,'Ve’ .., by analyzing the observa ”_y propgr 'e_s 0
simulations. the filter's error-state system model. The main contributions

of this work are the following:

|. INTRODUCTION « Through an observability analysis, we prove that the stan-

For autonomous vehicles exploring unknown environments, dard EKF-SLAM employs an error-state system model
the ability to perform simultaneous localization and mapping  that has an unobservable subspace of dimension two, even
(SLAM) is essential. Among the numerous algorithms devel-  though the underlying nonlinear system model has three
oped thus far for the SLAM problem, the extended Kalman unobservable degrees of freedom (corresponding to the

filter (EKF) remains one of the most popular ones, and has position and orientation of the global reference frame).
been used in several practical applications. In this work, we This is a primary cause of filter inconsistency.

address the:onsistencyissue of the EKF-SLAM algorithm, o« We propose a new a|gorithm, termddrst Estimates

which has recently received considerable attention [1]-[5]. As  Jacobian(FEJ)-EKF, which improves the estimator’s con-
defined in [6], a state estimator is consistent if the estimation  sjstency during SLAM. Specifically, we show analytically
errors (i) are zero-mean, and (ii) have covariance matrix that when the EKF Jacobians are computed using the first-
smaller or equal to the one calculated by the filter. Consistency ever available estimates for each of the state variables, the
is one of the primary criteria for evaluating the performance of  error-state model has tkmmeobservab”ity properties
any estimator; if an estimator is inconsistent, then the accuracy as the underlying nonlinear model. As a result of these
of the produced state estimates is unknown, which in turn properties, the new FEJ-EKF outperforms, in terms of

makes the estimator unreliable. accuracy and consistency, alternative approaches to this
Since SLAM is a nonlinear estimation problem, no provably  problem [1].

consistent estimator can be constructed for it. The consistency

of every estimator has to be evaluated experimentally. In Il. SLAM OBSERVABILITY ANALYSIS

particular for thestandardEKF-SLAM algorithm, there exists  The observability properties of SLAM have been studied
significant empirical evidence showing that the computed state few only cases in the literature. In particular, [7], [8]
estimates tend to bénconsistent The first work to draw investigated the observability of a simpieear time invariant
attention to this issue was that of Julier and Uhlmann [3]LTI) SLAM system, and showed that it is unobservable.
Specifically, in [3] it was observed that when a stationary rob@n the other hand, in [9] the observability of the nonlinear
measures the relative position of a new landmark multipLAM system was studied, using the nonlinear observability
times, the estimated variance of the robot’s orientation bexnk condition developed by Hermann and Krener [10]. This
comes smaller. Since the observation of a previously unsegork proved that the underlying, nonlinear, SLAM system is
feature does not provide any information about the robotisobservable, with three unobservable degrees of freedom.
state, this reduction is “artificial,” and leads to inconsistencilowever, to the best of our knowledge, an analysis of the
Bailey et al. [2] examined several symptoms of the inconsisbservability properties of the EKF's linearized error-state
tency of the standard EKF algorithm, and argued, based system model does not exist to date. As shown in this paper,



these properties play a significant role in determining the L J (IA)Rk+1§-_f)Rkk):| (7

consistency of the filter. [01x2
In the following, after presenting the equations of the stan- 'C((]BRW) 051
dard EKF-SLAM formulation, we compare its observability Gr, = 010 1 (8)

properties with those of the underlying nonlinear system, and )
use this analysis to draw conclusions about the consistencp{er 3 b 0 -1

of the filter. To preserve the clarity of the presentation, iyhere 1 0
this section we consider the case whersirggle landmark is It is important to point out that the form of the propagation
included in the state vector. However, the conclusions drawqguations presented above is general, and holds for any robot
in this case can be readily extended to the general casekisfematic model (e.g., unicycle, bicycle, or Ackerman model).
multiple landmarks. We note that, due to space limitationSpr example, if the unicycle model is used, and we employ
some intermediate steps of the derivations have been omittégs approximation that the velocity and heading are constant
the interested reader is referred to [11] for details. during each propagation interval, we obtai"rflv:fq.gk+1 =
Um, 0t 0wy, 6t]T, wherew,,, andw,,, are the linear and

A. Standard EKF-SLAM Eotaftional velokcity]/ measuremkents, res’f)ectively, ands the

In the standard formulation of SLAM, the state vectosampling period. Substitution in (2)-(3) yields the familiar
comprises the robot pose and the landmarks’ positions in tfighot pose propagation equations:
global frame. Thus, at time-stépthe state vector is given by

T T R . O, Ste( DRy, ;)
xe= [ph on bf)7 =< fT @ i =P + |70 ©
mg k|k
wherexp, = [pgk #r,]T denotes the robot pose (position éz’RHm :éRW + Wi, Ot (10)

and orientation), angb;, is the landmark position.

1) EKF Propagation: In the propagation step, the robot'ssjmijlarly, the commonly used expressions for the matrices
odometry measurements are processed to obtain an estimatg g’f andGpg, can be derived from (5), (6) and (8) (cf. [11]).
the pose change between two consecutive time steps, and thez) EKF Update: The measurement used for updates in the

employed in the EKF to propagate the robot state estimag&r is a function of the relative position of the landmark with
On the other hand, since the landmark is static, its estima&pect to the robot:

does not change with the incorporation of a new odometry
measurement. The EKF propagation equations are giveén by:z; = h(x;) + vy = h (CT(¢Rk)(ka —Pr,)) +vi (11)

- _a ; R . . : .

PRy 1w =PRy T C(OR) " PRy (2) wherevy, is zero-mean Gaussian measurement noise with co-

. A R 2 ) . o i

ORpss i =ORu + Ry (3) VvarianceRy. In this work, we allowh to beany2-dimensional
measurement function, as long as it is invertible (i.e., as long

PLitiie TPLik “) as we can fully determine an estimate of the robot-relative
whereC(-) denotes the x 2 rotation matrix, and%kf{RM — landmark position fronz;). For instance, this is the case when
[Rkp}l%kﬂ qung+JT is the odometry-based estimate of* is a direct measurement of relative position, a pair of range

and bearing measurements, two bearing measurements from
#Qg cameras of a stereo pair, etc. Generally, the measurement
unction is nonlinear, and hence it is linearized for use in the
E&F. The linearized measurement-error equation is given by

the robot's motion between time-stegsand k& + 1. This
estimate is corrupted by zero-mean, white Gaussian no
wi = fexp,  — frxp, ., with covariance matrixQy.

In addition to the state propagation equations, the lineariz

error-state propagation equation is necessary for the EKF. This %R
is given by: 7y ~[Hg, Hi,] [i ""1] + Vi
Lyjp—1
- ®pr,  O3x2| [XRy Gk, AH X1 +V (12)
= ~ g J|k—1 k
FheHLlk |:02><3 L | XL 0505 M

(5) where Hg, and H;, are the Jacobians di with respect
to the robot pose and the landmark position, respectively,
where®r, andGp, are obtained from the state propagatioevaluated at the state estimatg,_,. Using the chain rule

é@kikw + Gka-

equations (2)-(3) as [11]: of differentiation, these are computed as:
2 R A n N A
(}Rk _ |: I2 JC(QJ)RI\M) kka+1:| (6) HRk :(th’)CT(d)Rmka [*IQ 7‘](ka“€71 — ka\k—l):I
O1x2 1 (13)
T
1Throughout this paper the subscrifjj refers to the estimate of a quantity Hyp, :(th)C (¢Rk|k,1) (14

at time-step?, after all measurements up to time-stepave been processed. . .

# is used to denote the estimate of a random variablehile z = = — & is  where Vhy, denotes the Jacobian &f with respect to the
the error in this estimatd, ., and L, denotem x n matrices of zeros  rohot-relative landmark position (i.e., with respect to the vector
and ones, respectively, whil, is then x n identity matrix. Finally, we use g, T | d h .

the concatenated formsp and c¢ to denote thesin ¢ and cos ¢ functions, pz = C" (¢r,)(PL —Pr,)), evaluated at the state estimate
respectively. X|k—1-



B. Nonlinear Observability Analysis for SLAM

Before studying the observability properties of the EK

for our analysis in Section 1I-C. By inspection, we see that
gne possible basis for the spadg" is given by

system model, we conduct the observability analysis for the 1 0 —ygr
underlying continuous-time nonlinear SLAM system. By com- 0 1 =zp
paring the properties of the actual, nonlinear, system with dG- =span |0 0 1 | =span [nl ns ng} (18)
those of the EKF system model, we will be able to identify a 1 0 —yg
fundamental shortcoming of the standard EKF formulation, 0 1 zp

which leads to filter inconsistency. The nonlinear obsery;om the structure of the vectons; and n, we see that

ability analysis is based on thabservability rank condition

a change in the state bAx = an; + fny, o, € R

introduced in [10]. Specifically, Theorem 3.11 in [10] Provegorresponds to a “shifting” of the: — y plane by units
that “if a nonlinear system is locally weakly observable, thélong xz, and by 3 units alongy. Thus, if the robot and

observability rank condition is satisfied genericallyVe here

landmark positions are shifted equally, the statesdx+ Ax

show that the SLAM system does not satisfy the observabilifyj)| pe indistinguishable given the measurements. To better
rank condition, and thus it is not locally weakly observablg,qerstand the physical meaning1ef, we consider the case

nor locally observable.

where ther — y plane is rotated by a small angie. Rotating

_For the continuous-time :_;malysis_ ‘we employ a unicyclge coordinate system transforms any point [z y]” to a
kinematic model, and a relative-position measurement mOdﬁbint x' = [/ /|7, given by:

although identical conclusions can be reached if different ,
models are used [9]. The system model in continuous—time[z/] — C(6¢) [ﬂ ~ {61(25 —fcb] {ﬂ _ [ﬂ iy [—Ty]

form is given by

iR(t) cé(t) 0
yr(t) so(t) 0
or(t)| =| 0 [v(@®)+ |1|w(®)
i1 () 0 0
L (t) 0 0
x(

(15)

A T . . . .
whereu = [v w] is the control input, consisting of linear ;
and rotational velocity. The continuous-time relative-position

measurement model is described by the expressions:

2(t) = CT(6(t))(pr — Pr(1))

_ [ cp(t)(r(t) — zr(t)) + s6()(yr(t) — yr(?)) }
—s¢(t)(wL(t) — zr(t)) + co(t)(yL(t) — yr(t))
- [ @

The observability analysis for the system model described
in (15) and (16) proceeds by first computing the space span

by all thekth order Lie derivatived} h; (for k € N, j = 1,2,

1 = 1,2), which we denote by. The spacelg, spanned by

the gradients of the elements @fis [11]:

dG = span (17)
s¢ —cp —ch(xry —2aRr)—so(yL —yr) —s¢ co }
cp  s¢  so(xp —xR) —chlyr —yr) —co —s

where we have employed the small-angle approximations
c(6¢) ~ 1 and s(6¢) ~ d¢. Using this result, we see that

if the plane containing the robot and landmarks is rotated by
d¢, the SLAM state vector will change to

Th TR —YR
Yr YR TR
x' = |¢h| ~ |or| +p| 1 | =x+d¢n; (29)
Tl rr —yL
Ty, Xy, Xy,

which indicates that the vectar; corresponds to a rotation of
the z — y plane. Sincens € dG=, this result shows that any
such rotation is unobservable, and will cause no change to the
measurements. The preceding analysis for the meaning of the
basis vectors ofiG- agrees with intuition, which dictates that
the global coordinatesof the state vector in SLAM (rotation
and translation) are unobservable.

C. EKF-SLAM Observability Analysis

In the previous section, it was shown that the underlying
'beh sical system in SLAM has three unobservable degrees of
freedom. Thus, when the EKF is used for state estimation in
SLAM, we would expect that the system model employed by
the EKF also shares this property. However, in this section we
show that this is not the case: the unobservable subspace of the
linearized error-state model in the standard EKF is generally
of dimension only 2.

Since the linearized error-state model for EKF-SLAM is

The matrix shown above is the “observability matrix” for thdime-varying, we employ thiacal observability matrif12] to

nonlinear SLAM system under consideration. Clearly, the rai€"form the observability analysis. Specifically, for the EKF-
of this matrix is two, and thus the system is unobservablg-AM system considered in this work (cf. (5) and (12)), the

Intuitively, this is a consequence of the fact that we cann

igcal observability matrix for the time interval between time-

gain absolute but rather onlyrelative state information from St€PSk andk +m is defined as:

the available measurements.

Even though the notion of an “unobservable subspace”
cannot be strictly defined for this system, by examining the
physical interpretation of the basis @lG+, which is the
subspace orthogonal @G, we will gain useful information

Hy,
Hy 119
M £ : (20)

Hirm®Prim—1-- Pr



which can be expanded by substituting the matri@gsand therefore see that if it was possible to evaluate the Jacobians
H; (cf. (5) and (12), respectively), to yield: using the true state values, the linearized error-state model
employed in the EKF would have observability properties

T HR&) I_?Lk similar to those of the actual, nonlinear SLAM system.
M — Re+r = Re Liets (21) 2 Standard EKF-SLAMWe now examine the observabil-
: : ity properties of the EKF when the Jacobians are evaluated
Hr, . @Ry ®r. Hiy,, using the latest state estimates, which is the case in a real
_ Diae(H H implementation. We start by deriving an expression analogous
fag(Hy,, -, L’;*"”)X to that of (23). We obtain:
H; Hg, I,
H! i—li k<I> I I, J (f)Rk+2\k+1 - f)Rmk - Aka+l)
Lyt .Rk+1 Ry 2 22) (ﬁRk-H@Rk = 0100 +2|k 1 |k
1 ' ' where Apr,,, = PRy,1ps: — PRiy, 1S the correction in
He o HR o PRy PRy I the robot position due to the update at time-step 1. Using
N induction, we can show that:
The system is locally observable over the time period from ®r.. Pry, . PR, = (25)

k to k + m if and only if the local observability matrix
M is full-rank. Since the matrixDiag(Hr,,---,Hg,_,.)
is nonsingular, it becomes clear thatnk(M) = rank(IN),
and moreover, the matricdsl and N have the same right ) .
nullspace. Therefore, studying the rank and nullspacigs Where: > 0. Moreover, we obtain:

012 1

. A ki1
L J (ka+i\k+i71 ~ PRy, — Ej:]i+1 ApRJ’)]

equivalent to studying those &f. HZI Hp &p . - ®p (26)
1) Ideal EKF-SLAM: Before considering the rank of the R R T Bkt § o
matrix M, which is constructed using thestimatedvalues of = - {12 J (f)LHi'M,1 — PRy, j;’,:rl ApRj)}

the state in the filter Jacobians, it is interesting to study the i i _
observability properties of the “oracle”, or “ideal” EKF (i.e.,USing this result, we can write matriX as:

the filter whose Jacobians are evaluated usingrinevalues  ny — 27)

of the state variables). In the following, all matrices evaluated R .

using the true state values are denoted by the symbdl “ -L —J (PAmel - pARka—l) L
We start by noting that (cf. (7)): —I —J (pLHMk - pRW) I

I —J (PLisojesr — PRy T APR, I,

(i) ‘i> _ 12 J (ka+2 - ka) (23) ( Frelee . o k+1) .

Rp41 ¥ Ry 0142 1 . .
~ A k+i—1

Based on this property, it is easy to show by induction that: | —I2  —J (PLkme ~ PRy, T jik+1 APRJ-) L

b & . = L J(Pre.: —PR) At this point, we note that the corrections of the robot position
Reti-1 = Riti-z e = 10749 1 at any given time step are generally nonzero, and additionally,

where i > 0. Using this result, and substituting for thethe landmark state estimates at different time instants are not

measurement Jacobians from (13) and (14), we can prove 'ﬁ?éjal' Ther.efore, the third column &f will be, in general,
following useful identity: a vector with unequal elements, and heneek(IN) = 3.

We thus see that the linearized error-state model employed in
H,! Hg, ®p,. g, the standard EKF-SLAM has different observability properties
_ [—I “3(py — )] _H'H (24) than the underlying nonlinear system. In particular, by process-
2 PL = PR Lyt B ing the measurements collected in the intefkak + m], the
which holds for all; > 0. N can now be written as EKF acquires information in 3 dimensions of the state space
H-'H I (along the directions corresponding to the observable subspace
Ly Rk 2 L —J(pr-pr) L of the EKF). However, as the nonlinear observability analysis
N — Hp Hg, I _ L —Jpr—pr) I of Section II-B shows, the measurements actually provide
o : : . : information in only 2 directions of the state space. As a result,
the EKF gains “spurious information” along the unobservable
directions of the underlying nonlinear SLAM system, which
Clearly, rank(N) = 2 and thus the ideal EKF system model€ads to inconsistency. _ _
is unobservable. Most importantly, however, it can be easily TO probe further, we note that the basis of the right nullspace
verified that a basis for the right nullspace B (and thus Of N is given by:
for the right nullspace oM) is given by the vectors shown _
in (18). Thus, the unobservable subspace of the ideal EKF null(N) = [nl nﬂ (28)
system model isdentical to the spacelG~, that contains the which, as explained in Section II-B corresponds to a shifting of
unobservable directions of the nonlinear SLAM system. Whe z — y plane. It is interesting to point out that the “missing”

I:IEiI:IRk I, -I, —J(pL—pr.) I



direction in the unobservable subspace of the EKF system measurement Jacobian with respect to the robot pose as:
model is the one along the vectag, which corresponds to a , T2 R R

rotation of thex —y plane. Therefore, we see that the filter will Hy, =(Vh)C' (Ory,,) [F12 =I(Bry, = PRy, )]
gain “nonexistent” information about the robot’s orientation. (30)

This will lead to an unjustified reduction in the uncertainty as a result of the above modifications, only tfiest esti-

of the robot's orientation, which will, in turn, further reducemates of all landmark positions and all robot poses appear
the uncertainty in all the state variables. This agrees in Sofpethe Jacobians of the filter. This has as effect that the
respects with [2], [5], where it was argued that the orientatigfhservability matrixN of this new filter, which we ternfirst-

uncertainty is the major cause of the filter's inconsistencitstimates Jacobia(FEJ)-EKF, assumes the form:
However, we point out that theot causeof the problem is the

fact that the Jacobians are evaluated at different linearization - —J (IA)LW - f’Rw-,_l) I,
points at every time step. This changes the dimension of I, —J(Pr,, — Pryy) L2
the observable subspace, and thus fundamentally alters the N = |- —=J (f)LwZ *IA)Rmfl) I,

properties of the estimation process.
An additional interesting point is that the covariance matrix I I (5 T I
of the measurements does not appear in the observability -2 T (me *pRmk—l) 2

analysis of the filter. Therefore, even if this covariance matrighis matrix is of rank 2, and thus the FEJ-EKF is based
is artificially inflated, the filter will retain the same ObSGFVUn an error-state system model whose unobservable Subspace
ability properties (i.e., the same observable and unobservaglesf dimension 3. We stress that the FEJ-EKF estimator is
subspaces). This shows that no amount of covariance inflati@ijizable “in the real world”, since it does not utilize any
can result in correct observability properties. Similarly, eveghowledge of the true state. Interestingly, even though this
if the Iterated EKF is employed for state estimation, thgew filter does not use the latest available state estimates (and
same, erroneous, observability properties will arise, since s utilizes Jacobians that are less accurate than those of the
landmark position estimates will generally differ at differengtandard EKF), it exhibits better consistency properties than

time steps. the standard EKF, as shown in the following section.
As a final remark, we note the “correct” observability
properties of the ideal EKF are attributed to the fact that (24) IV. SIMULATION RESULTS

holds, which is not the case for the standard EKF. When A series of Monte-Carlo comparison studies were conducted
condition (24) is met, it ensures that all the block rows Qfnder various conditions, in order to validate the preceding
the matrix N are identical, and leads to an unobservabl@eoretical analysis and to demonstrate the capability of the
subspace of dimension three. Thus, (24) can be seen asgE-EKF filter to improve the consistency of EKF-SLAM.
sufficient condition that, when satisfied by the filter JacoFhe metrics used to evaluate filter performance are: (i) the
bians, ensures correct Observability pl’operties. |ntereSting|y,F@ﬁ|s error, and (||) the average normalized (State) estimation
shown in [11], (24) is equivalent to the condition derived in [3¢rror squared (NEES) [6]. Specifically, for the landmarks
(Cf. Theorem 1 therein), for the case where the robot remai\% Compute the average RMS and average NEES errors by
stationary. This indicates that the Jacobian constraint (Zék)eraging the squared errors and the NEES, respectively, over
derived based on the observability criterion is more genergl| Monte Carlo runs, all landmarks and all time steps. On the
and encompasses the constraint of [3] as a special case. other hand, for the robot pose we compute these error metrics

by averaging over all Monte Carlo runs for each time step

Careful observation of the matriX in (27) reveals that it  The RMS of estimation errors provide us with a concise
is possible to obtain an EKF system model with an unobsefetric of the accuracy of a given estimator. On the other hand,
able subspace of dimension three, even if the Jacobians the NEES is a powerful metric for evaluating filter consistency.

not evaluated at the true state values. For this purpose, gRecifically, it is known that the NEES of an-dimensional
following two changes are necessary. Gaussian random variable follows)& distribution with A/

degrees of freedom. Therefore, if a certain filter is consistent,

e expect that the average NEES for the robot pose will be

close to 3 for allk, and that the average landmark NEES wiill

be close to 2. The larger the deviations of the NEES from these

(29) values, the larger the inconsistency of the filter. By studying

both the RMS errors and NEES of all the filters, we obtain a

The difference compared to (7) is that the robot positiocomprehensive picture of the estimators’ performance.
estimate prior to updatingr, ,_,, is employed in this  In all the simulation tests presented in this section, the
computation instead of the updated estimaig, , . robot moves at a constant velocity of= 0.25 m/sec, the

2) In the evaluation of the measurement Jacobian matsxandard deviation of the velocity measurement noise is equal
Hp, (cf. (13)) we always utilize the landmark estimatéo o, = 0.1v, while the rotational velocity measurements
from the first timehe landmark was detected. Thus, if are corrupted by noise with standard deviatign = 1°/sec.
landmark was first seen at time-stépwe compute the The robot records measurements of the relative position of

1) Instead of computing the state-propagation Jacobi
matrix ®, as in (7), we employ the expression:

I I J (kaJrl\k - f)Rk\k—l)
Re 012 1
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Fig. 1. Monte Carlo results for an exploration-SLAM scenario. (a) Average NEES of the robot pose errors (b) RMS errors for the robot pose (position and
orientation). In these plots, the solid lines correspond to the ideal EKF, the dashed lines to the FEJ-EKF, the solid lines with circles to the standard EKF, and
the dotted lines to the robocentric mapping algorithm of [4]. Note that the RMS errors of the ideal EKF, the FEJ-EKF, and the robo-centric SLAM algorithm
are almost identical, which makes the corresponding lines difficult to distinguish.
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Fig. 2. Monte Carlo results for a SLAM scenario with multiple loop closures. (a) Average NEES of the robot pose errors (b) RMS errors for the robot
pose (position and orientation). In these plots, the solid lines correspond to the ideal EKF, the dashed lines to the FEJ-EKF, the solid lines with circles to
the standard EKF, and the dotted lines to the robocentric mapping algorithm of [4]. Note that the RMS errors of the ideal EKF and the FEJ-EKF are almost
identical, which makes the corresponding lines difficult to distinguish.

landmarks that lie within its sensing range of 5 m, witlmake the effects of inconsistency more apparent. Two SLAM
standard deviation equal to 15% of the robot-to-landmadcenarios are considered: exploration SLAM and SLAM with
distance along each axis. 100 Monte Carlo simulations wdm®p closure. In the first case, the robot constantly explores
performed, and during each run, four filters process the saomeseen territory, without returning to already revisited areas.
data, to ensure a fair comparison. The four filters comparéd the end of each run, approximately 40 landmarks have
are: (i) the ideal EKF, (ii) the standard EKF, (iii) the FEJ-EKFheen detected. In the second case, the robot executes 10 loops
and (iv) the robocentric filter [1], [4], which aims at improvingon a circular trajectory, and observes 20 landmarks in total.
the consistency of SLAM by expressing the landmarks in Ehe comparative results for all filters are presented in Figs. 1
robot-relative frame. It should be pointed out that the sens@nd 2, and Tables | and Il. Specifically, Fig. 1(a) and Fig. 1(b)
noise levels selected for the simulations are larger than wissiow the average NEES and RMS errors for the robot pose,
is typically encountered in practice. This was done singespectively, for the case of exploration SLAM. Fig. 2(a) and
larger noise levels lead to higher estimation errors, whidfig. 2(b) show the same quantities for the circular trajectory.
in turn cause the Jacobian estimates to be less accurate, @ndhe other hand, Tables | and Il present the average values of



Ideal EKF Std. EKF FEJ-EKF [4] V. CONCLUSIONS

Position Err. RMS (m) In this paper, we have studied in depth the issue of filter
Explor. 22.41 32.73 2265 2273  inconsistency in EKF-based SLAM, from an observability
Loops 0.95 2.08 0.98 1.16 perspective. By comparing the observability properties of the
NEES nonlinear SLAM system model with those of the linearized
Explor. 2.58 6.70 2.66 4.32 error-state model employed in the EKF, we proved that the
Loops 21 12.93 2.35 6.65 observable subspace of the standard EKF is always of higher

dimension than the observable subspace of the underlying
nonlinear system. As a result, the covariance estimates of
the EKF undergo reduction in directions of the state space
where no information is available, which is a primary cause
of inconsistency. Based on the above analysis, a new “First

TABLE |
LANDMARK POSITION ESTIMATION PERFORMANCE

Ideal EKF Std. EKF FEJ-EKF  [4]  Estimates Jacobian” (FEJ) EKF is proposed to improve the
Position Err. RMS (m) estimator’s consistency during SLAM. The proposed algorithm
Explor. 3.86 461 3.87 389  performs better with respect to consistency, because when
Loops 0.69 0.98 0.70 0.75  the filter Jacobians are calculated using the first available
Heading Err. RMS (rad) estimate for each state variable, the error-state system model
Explor. 0.074 0.084 0074 o074 has an observable subspace of the same dimension as the un-
Loops 0.079 0.11 0.082 0.082 derlying nonlinear SLAM system. Through extensive Monte-
NEES Carlo simulations we have verified that the FEJ-EKF is more
E accurate and more consistent than both the standard EKF
xplor. 4.16 8.05 4,07 5.92 . ; ;
Loops 3.05 12.79 368 6.70 and ropocentrlc mapping [4], whlch has been proposed for
improving estimator consistency in SLAM.
TABLE II
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