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Carbon Footprint

e Carbon Footprint is usually defined as:

A measure of the total amount of carbon dioxide
(CO,) and methane (CH,) emissions of a defined
population, system, or activity, considering all
relevant sources, sinks, and storage within the
spatial and temporal boundaries of that
population, system, or activity of interest.

e Usually the measure is presented in carbon dioxide equivalent.
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Carbon Footprint

* We are interested in power plants with low carbon footprint:
* Both CO, and CH, are greenhouse gases.
e Potential for “Global Warming”

* They can also be toxic at high concentrations

e |t is desired to reduce carbon footprint of different sectors.
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Carbon Footprint

* Annual greenhouse gas emissions by sector:
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Carbon Footprint

e Carbon footprint is also defined for power plants:
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(UK, European, USA and Australian power plants)

e Conventional coal combustion has highest carbon footprint.
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Carbon Footprint

e U.S. Electricity Generation by Source:
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* The top sources are those with top carbon footprints.
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Carbon Footprint

* Percentage contributions of CO, emissions in 2008:
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Carbon Footprint

* Nuclear energy has low carbon footprint.

e But it does have issues with respect to nuclear wastes.

e Desired choices (Renewable Sources):
* Marine: Wave and Tidal
* PV: Solar
* Wind

e Hydro
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* Tax applied based on carbon footprint.

e |t is to encourage moving towards renewable generation.

e Example:
e Natural Gas: 181 g CO2 / kWh (0.66 cents / kWh)

e Coal: 215 g CO2 / kWh (1.21 cents / kWh)

e Boulder, CO applied the first carbon tax in the U.S. in 2006.
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Wave Energy

* Wave power is the energy from ocean surface waves.

1 = Propagation direction.
2 = Wave crest.

3 = Wave trough.

e Orbital motion of particles decreases with increasing depth.
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Wave Energy Converter

* Wave Snakes as wave energy converter

e They are floating on the ocean surface waves.
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Wave Energy Converter

e Generation capacity for each device is around 750 kW-1MW.

* They come as wave farms with up to 10 MW capacity or so.
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Wave Energy Converter

e Each device has 3 power modules joined by tubular sections:

cable

Power modules

e A cable connects the device to the ocean floor to hold it.
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Wave Energy Converter

* Inside each power module:

e Motion is resisted by hydraulic arms in each tubular joints.
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Tidal Energy

e Tides are the rise and fall of sea levels:

e Caused by moon and sun’s gravitational forces.

* Most places in the ocean usually experience

* One or two high tides / low tides every day.

* The times and amplitude of the tides at the coast:

*Are influenced by the alignment of the sun and moon.
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Tidal Energy

e Example:

g

High Tide Low Tide
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Tidal Energy

e Tides are major sources of energy:

 Q: How can we use the tidal energy in this figure?
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Tidal Barrage

e Tides are major sources of energy:

Tide cnming in

e The operation is somehow similar to a dam! (Q: Why?)
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Tidal Barrage

e Rance Tidal Power Station in France (world’s first tidal station):

e Turbines: 24, Peak: 240 MW, Annual generation: 600 GWh

e Video: http://www.youtube.com/watch?v=tSBACzRE3Gw
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Hydro Dam Energy

* Hydro dams are built on big rivers.

* In the U.S. the largest dams are on the Columbia River.
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Hydro Dam Energy

* There are 6 dams with more than 2000 MW capacity in U.S.

" Name | capaciyuw) | sate

Grand Coulee Dam 6800 WA
Chief Joseph Dam 2600 WA
John Day Dam 2200 OR
Bath County Dam 2100 VA
Hoover Dam 2000 AZ
The Dalles Dam 2000 WA

e The world’s largest dam is in China: 18000 MW

e Canada has 8 dams with more than 2000 MW capacity.
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Solar Energy

 Solar panels are used to convert solar energy to DC power.
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e 14 MW solar farm in Nevada.
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Solar Energy Capacity in the U.S.
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Solar Energy

* States with highest grid-connected solar generation capacity:

S e | capacity )

California 1022
New Jersey 260
Colorado 121
Arizona 110
Nevada 104

e Total U.S. solar generation capacity: 2152 MW

* World's largest photovoltaic power station is in China: 200 MW
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Solar Energy

e Seasonal variation of average generation level in San Fransico:
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e The generation level may also change during the day:

* A cloudy sky means lower generation.
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Concentrated Solar Power

e CSP systems use mirrors or lenses to concentrate:

e A large area of sunlight onto a small area

* In many cases, the mirrors follow the sun.

* The sun light could be concentrated on
* PV cells

* Pipes of hot liquid
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Solar Thermal Energy

* The concentrated sun light is used to:
* Boil some liquid

* Generated steam is used to create power in a generator

e Video: http://www.youtube.com/watch?v=rO5rUqgeCFY4
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Wind Energy Potential in the U.S.

* Wind power depends on the wind speed.
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Wind Energy Potential in the U.S.

e States with highest wind power generation potential:

S e | capacity )

Texas
Kansas
Montana
Nebraska
South Dakota

1022
260
121
110
104

e Total U.S. Wind Power Capacity in 2011: 43,461 MW

e U.S. DoE target: 20% Wind Power by 2030.
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Wind Power vs. Wind Speed

*A typical wind speed — wind power curve:

Power (kilowatts)
A Rated output speed Cut-out speed
Rated output power J‘ *-1
Cut-in speed
35 14 25
Steady wind speed (metres/second)

A minimum cut-in speed is needed to start generation.

e Video: http://www.youtube.com/watch?v=tsZITSeQFRO
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Onshore vs. Offshore

* Wind turbines can be installed:

e Onshore: on land
* Cheaper Installation
* Cheaper Integration

* Cheaper Maintenance

* Offshore: on sea An Offshore wind farm

e Less Obstruction

e Higher and More Steady Wind Speed (Q: what is the advantage?)
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Challenges with Renewable Energy

* The key problem is the intermittency:

Wind Speed in Lubbock, TX

* Changes in wind speed will result in changes in wind power.
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Challenges with Renewable Energy

* The key problem is the intermittency:
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e Actual power consumption (red) and solar power generation
(green) on Aug. 30, 2011 for a home at the Mueller Smart Grid
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Demonstration Project of Pecan Street Inc. in Austin, TX.
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Challenges with Renewable Energy

e Consider a power grid connected to multiple wind farms.
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Challenges: Constantly Matching Supply and Demand

Fluctuations Can Destabilize the Grid
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Renewable Power Integration

e Some options to make integration easier:
* Limit Renewable Generation
e Curtailing
e Using Fast Responding Generators
* Using Storage Devices

 Demand Response

e Q: What else?
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Limited Renewable Generation

e Consider a typical daily load in Texas:

Peak: 34,619 MW
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* Total load demand is always more than 25,000 MW.

* In general, we can assume a base load of at least 10,000 MW.
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Limited Renewable Generation

* If total renewable generation is much less than the base load:

* Renewable generation can never exceed the demand.

* We can define net load as

Net Load = Load — Renewable Generation >0

e Fluctuation in renewable generation:

e Will be treated just like fluctuations in load demand.

Dr. Hamed Mohsenian-Rad Communications and Control in Smart Grid Texas Tech University 37




* As we increase the installed capacity of renewable generation:

* |t may happen that generation exceeds load demand

* The key problem:

e Peak generation may not match peak demand.

* An easy option is to curtail excessive generation

e Shut down some wind turbine, solar panels, etc...
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Using Fast Responding Generators

e Natural gas and coal units can quickly change generation level.

* They can compensate fluctuations in renewable power.

NAVAVAFSSE ,

v

v

Renewable Generation Fast Responding Generation
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Using Fast Responding Generators

e Q: Do you see any disadvantage in this solution?

* Q: What are the carbon footprints for natural gas and coal?
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Using Storage Devices

e Charge at higher generation levels. Discharge otherwise.

Renewable Generation g

»
»

Charge

N

| I Net Output
J_I_I | 1

Storage

Discharge
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Using Storage Devices

e Some existing storage technologies:
* Batteries
e Flywheels
e Ultra Capacitors
e Hydrogen Fuel Cell
e Compressed Air
 Pumping Hydro

e Liquid Heating
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Storage Technologies: Batteries

e Common Options:

e Lead-acid Battery

 Electrochemical Reactions
 Mature Technology
* [nexpensive

* Low energy / power densities

* Poor life cycle

Electron Flow

-

[ ]

Anion flow

Anode
Cathode

Cation flow

Electrolyte

e Often Requires maintenance.
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Storage Technologies: Batteries

e Common Options:
e Lithium-ion Battery

e Lithium-ion Electrochemical Cells

A Lithium-ion Battery of a Laptop Computer
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Storage Technologies: Batteries

e Industrial / Commercial Products (Order of Megawatts):

One MW p|Iot storage prOJects by PJM in Pennsylvama
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Storage Technologies: Batteries

* AES Battery Storage Projects in the U.S.:
* A two-MW project in Huntington Beach, CA
* A one-MW project in Houston, TX
e An eight-MW project in New York that is scaling to 20 MW.

* A 32 MW Project in West Virginia to connect to PJM.

e Applications:

* Frequency Regulation / Renewable Energy Integration
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Storage Technologies: Batteries

* AES Battery Storage Projects in the U.S.:

These containers hold 1.3 million batteries: AES WV Project

e Video: http://vimeo.com/32170739 (Watch From Min 3:20)
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Storage Technologies: Flywheels

e Flywheels Energy Storage (FES) Operation:
e Accelerating a rotor (flywheel) to a very high speed
 Maintaining energy in the system as rotational energy
* Once we disconnect energy source:
e Rotor will continue rotating

* Acting as a source of energy

e Video: http://www.youtube.com/watch?v=mV_b5oMqc2M
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Storage Technologies: Flywheels

* Energy storage is calculated given:

* Mass M
e Cylinder radius r

e Angular velocity w

* Two approaches:

* Big heavy wheels spinning slowly

* Small light wheels spinning quickly
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Storage Technologies: Flywheels

e Commercial FES:

e Rotors are suspended by magnetic bearings

 Maintaining energy in the system as rotational energy

e Spinning at 20,000 - 50,000 rpm in a vacuum enclosure

e Efficiency: Can be up to 90%.

e Capacity: hundreds of kwh per flywheel.
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Storage Technologies: Flywheels

e Commercial FES:

A Flywheel storage technology in New York by Beacon Power

e VVideo: http://www.youtube.com/watch?v=ay NiGu7mis
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Storage Technologies: Flywheels

e Comparison Between Batteries and Flywheels:

Cost range
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Capital cost - $/kW
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Storage Technologies: Ultra Capacitors

* Also known as Electric Double-Layer Capacitor:

An example for what you would see in an Ultra Capacitor Box

e VVideo: http://www.youtube.com/watch?v=a04qlGo6x_Y
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Storage Technologies: Ultra Capacitors

e Advantages:

e Very long life time

e Millions of Charge and Discharge Cycles

e Low cost per cycle.

* Very high rate of charge and discharge

 Very high cycle efficiency: 95% or more.

* Low internal resistance
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Storage Technologies: Ultra Capacitors

e Disadvantages:

e High weights

* The amount of energy stored per unit weight is low

e High Self-discharge rate

e Short runtime (recall the comparison diagram)

* Low maximum voltage
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Storage Technologies: Hydrogen Fuel

* Hydrogen is not a primary energy source.

e Rather we should use some other type of energy

e To manufacture hydrogen

e Hydrogen is an eco-friendly fuel
e Can be used as a transportation fuel

e Can be used to generate electricity
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Storage Technologies: Hydrogen Fuel

* Hydrogen as a transportation fuel:

Hydrogen Vehicle |
Hydrogen Airplane

* We can use extra renewable power to manufacture hydrogen!
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Storage Technologies: Hydrogen Fuel

* Hydrogen as electricity storage:
e Charge: Use excessive power to manufacture hydrogen
e Storage: Storage Hydrogen in tanks / underground caves
e Discharge: Use hydrogen to generate electricity

e Hydrogen is eco-friendly fuel.

e Of course, the extra hydrogen can be used for transportation.

 Related Video: www.youtube.com/watch?v=meDgY98EuMw

Dr. Hamed Mohsenian-Rad Communications and Control in Smart Grid Texas Tech University 58




Storage Technologies: Compressed Air

e Compressed Air Energy Storage (CAES):
e Charge: Use excessive power to compress air
e Storage: Storage compressed air in underground caves
e Discharge: Use compressed air to generate electricity

* Through a compressed air engine / turibne

* Using expansion of compressed air

* Video: www.youtube.com/watch?v=dGd7PICO9AM (from 1:00)
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Storage Technologies: Compressed Air

e Compressed Air Energy Storage (CAES):

e Pros:

* Huge power capacity

Wi/ | Peak-d e Heat
N, \ Elsctﬂc!ly%ul Exhaust
ok Low & High
e Pressure
Expanders ails

./ Generator Turbines Recuperator

e Cons: Mo

-

 Special Locations
e Slow Responding

* Relatively Expensive
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Storage Technologies: Pumping Hydro

e Pumped Storage Hydroelectricity (PSH):

* A type of hydroelectric power generation (Q: other exmp?)

e Charge: Mump water to a reservoir in high altitude
e Storage: Store water in the reservoir until needed

e Discharge: Release water to a hydro turbine

e Charge at off-peak hours and discharge at peak hours!
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Storage Technologies: Pumping Hydro

e Pumped Storage Hydroelectricity (PSH):

An example for the operation of PSH
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Storage Technologies: Pumping Hydro

e PSH requires building big reservoirs:

A PSH reservoir in Michigan
& A PSH reservoir in Japan

e Video: www.youtube.com/watch?v=mMvOZSVXlzl (up to 4:30)
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Storage Technologies: Liguid Heating

* Renewable power is used to heat / boil a liquid.
 Boiled liquid is stored in tanks.

e |t is later used to generate electricity.

* We already saw an example:

e Solar Thermal Energy

e See Slide #27
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Storage Technologies: Optimal Choices

 Renewable Integration May Require Various Storage Options.

* They may not be a single best option
 Different Cost and Availability

« Different Capacity and Runtime |
— Q: What is the difference?

e Different Response Time

e Optimal resource management is needed to utilize them all!
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Demand Response

* Main Idea:

* Increase load when more renewable power is available.

e Decrease load when less renewable power is available.

* Pricing (e.g., Real-time Pricing) can help:

e Lower (even negative) prices when generation increases.

e Higher prices when generation level drops.
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Demand Response

e Challenges:

 Demand Response is Usually Slow Responding
e Requires Notification to Users

e ECS Devices May Help to Some Extent

e Required Response Time: 10 Minutes or Less

e Otherwise, we may need excellent wind forecasting.

e Existing Project: Bonneville Power Admin (NW) and EnerNOC

Dr. Hamed Mohsenian-Rad Communications and Control in Smart Grid Texas Tech University 67




Renewable Energy Prediction

 So far, we saw multiple ways to integrate renewable power.

* However, efficient decision making still requires

e Accurate renewable (specially wind) power forecasting.

Wind Speed (m's)

=] LI ] L] =]

Wind Speed in Lubbock, TX Q: When should we charge or discharge a battery?

Texas Tech University 68
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Renewable Energy Prediction

e Our focus is on wind power forecasting.

* In particular, short-term forecasting.

e But some techniques are general to any energy source.

* We may also differentiate:
* Forecasting the Power Output of a Single Wind Turbine

e Forecasting the Power Output of a Wind Farm
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Single Wind Turbine

e Assume that we know the wind speed vs. wind power curve.

Power (kilowatts)
A Rated output speed Cut-out speed
Rated output power 14‘ ‘L.
Cut-in speed
35 14 25
Steady wind speed (metres/second)

e Predicting wind speed can help us predict wind power.
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Single Wind Turbine

e Consider the following set of measurements

History <—

h =1200

e Let W(h) denote the wind speed measured at hour h.

* Prediction of W(1200) can be a function of W(1)...W(1199).
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Single Wind Turbine

e Assuming a linear prediction model, we can write:

W (h)=aW(h-1)+aW(h-2)+aW(h-3)+-+a W(2)+a WQ

h—1
=Y aW (h—i)
i=1
e Sampling resolution can be anything: 5 min, 10 min, ..., 1 hour.

e Furthermore, we may not use the entire history:

W(h):ZN:aiW(h—i), N <h-1
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Single Wind Turbine

* Q: How can we obtain the right choice of

e Parameters a,, a,, ..., a,?

* This can be done:

e Offline: Using a training sequence

e Online: A new model is derived / updated every time slot.

e Q: What is the difference between online and offline cases?
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Single Wind Turbine: Online Model Prediction

e At time h = 1000, if N =5, we expect to see:

Unknown { W (1000) = i aW (1000—-1i) =

- W(999) = i aW (999 i) =
W (998) = i aW (998—1) =

Known

1 W(997) = iaiw (997 —i) =

W (996) = iaiw (996—i) =
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Single Wind Turbine: Online Model Prediction

e Prediction Error:

{e(lOOO) W (1000)—|a, &, a, a, a|W(999) W (998) W (997) W (996) W (995)[

e(999) =W (999) —
£(998) =W (998) —
e(997) =W (997)

e(995) =W (995) —

* Q: Can we choose a,, ...,

a a,

3, a,
a, a,
e(996) =W (996) —[a, a,

a, a,

a, a, a

a, a

~

QD

a3 4

QD

a3 4

a4

QD
~

]
a

a, [W (997) W (996) W (995) W (994) W (993)]
a, [W (996) W (995) W (994) W (993) W (992)]
a, [W (995) W (994) W (993) W (992) W (991)[

]
a

W (998) W (997) W (996) W (995) W (994)[

_|

W (994) W (993) W (992) W (991) W (990)[

a, to minimize mean prediction error?

75
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Single Wind Turbine: Online Model Prediction

* Least Square Error Parameter Estimation:

mlanlrr; ize (VV (999) —
W (998) —
W (997) —
W (996) —
W (995) —

[a1 a2 a3 a

~

_ai a2 a3 a4
al a2 a3 a'4

a:l. a'2 a‘3 a4

_al a'2 a‘3 a4

a, W (998) W (997) W (996) W (995) W (994)] f +

—

a, [W(997) W (996) W (995) W (994) W (993)]
a; [W (996) W (995) W (994) W (993) W (992)]
a, [W(995) W (994) W (993) W (992) W (991)
a, [W (994) W (993) W (992) W (991) W (990)

_|_

—
_|_

—

|
+

+

e Q: Can you rewrite the above problem in matrix form?

e Q: Can you solve the formulated optimization problem?

Dr. Hamed Mohsenian-Rad

Communications and Control in Smart Grid Texas Tech University 76



Single Wind Turbine: Online Model Prediction

e Q: Do we always want to look at the whole history

* When we calculate the Least Square Error criteria?

e Q: What if we want to care less about older errors?
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Single Wind Turbine: Online Model Prediction

* Once we calculate a4, a,, ..., a,, we use them to predict:

v?/(1000)=[a1 a, a, a, a,|W(999) W (998) W (997) W (996) W (995)[

\ J \ J
| |

e Q: Should we use the same ag,, a,, ..., a, at time h =1001?

* Q: What if we want to update the prediction model?

e Q: What is the difference between online and offline models?
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Single Wind Turbine: Online Model Prediction

* So far, our predictions have been one-step ahead.

e Q: How can we make multiple step (e.g., 3) ahead prediction?

v?/(1000)=[a1 a, a, a, a,|W(999) W (998) W (997) W (996) W (995)[

W (00D =[a, a, a, a, a.]W(1000) W(999) W (998) W (997) W(996)}T

W(002)=[a, a, a, a, a]W(1001) W(1000) W (999) W (998) W(997)}T

e Accuracy degrades as we move forward in time for prediction.
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Single Wind Turbine

e Abdel-Karim et al. applied offline training to Dunkirk, NY data:

* Measurement resolution: 10 minutes

2

15

Normalized Wind speed
o
=] in -

o
tn

Q: What is N?

i
-

-
in

10 min

Actual

Ten min and one hour prediction using one hour past values
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Single Wind Turbine

e Abdel-Karim et al. applied offline training to Dunkirk, NY data:

* Measurement resolution: 10 minutes

2
1.5
1
0.5
0o
\

0.5

MNormalized Wind speed

Q: What is N?

-1

-1.5

Haowur

10 min 1 hour — Actual

Ten min and one hour prediction using 10 min past value
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Single Wind Turbine

e [t seems N = 1 works better.

e Similar results are reported in other papers.

 Q: How do you interpret these results?

e Q: What are the other prediction models when

 We only use the one past data to make the prediction?
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Single Wind Turbine: Markov Chain Prediction

e A Markov chain (MC) is a mathematical system that
* Undergoes transitions from one state to another

e Between a finite or countable number of possible states

* MC is a memoryless random process:
* The next state depends only on the current state

* Not on the sequence of events that preceded it.
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Single Wind Turbine: Markov Chain Prediction

* The memoryless property:

Pr{W () = w|w(h—1) = w, w(h-2) = w,, -, w(l) = w, , |
—Pr{w (h) =w|w(h-1) = w, |

 For stationary Markov Chains:

PrW (h) = w|w(h—1) =w, j=Pr{w (h—1) =w|w(h-2)=w, |
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Single Wind Turbine: Markov Chain Prediction

e Example: A Stationary Markov Chain with Three States

075 8
e Q: What is the sum of 9 e
: . 15
* Incoming probabilities
: . 025 25
e Qutgoing probabilities P .

to and from each state?

oy e . w -5
Q: What does it indicate?
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Single Wind Turbine: Markov Chain Prediction

e Example: Obtain the transition probability matrix for this MC:

8
075
_ _ 9
e .15
2 25
s .05
b
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Single Wind Turbine: Markov Chain Prediction

e Obtain the transition probability matrix from measurements:

1,3,2,2,3,1,2,1,3,3,2,1,1,2,3,3,2,3,1,2,3,1,2,3,3,2,2,1,1,3,2,1,2,2,3

* If we are in state 1:
e Probability of staying in State 1:
e Probability of going to State 2:

* Probability of going to State 3:
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Single Wind Turbine: Markov Chain Prediction

e Obtain the transition probability matrix from measurements:

1,3,2,2,3,1,2,1,3,3,2,1,1,2,3,3,2,3,1,2,3,1,2,3,3,2,2,1,1,3,2,1,2,2,3

e If we are in state 2:
e Probability of going to State 1:
e Probability of staying in State 2:

* Probability of going to State 3:
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Single Wind Turbine: Markov Chain Prediction

e Obtain the transition probability matrix from measurements:

1,3,2,2,3,1,2,1,3,3,2,1,1,2,3,3,2,3,1,2,3,1,2,3,3,2,2,1,1,3,2,1,2,2,3

e If we are in state 3:
e Probability of going to State 1:
e Probability of going to State 2:

e Probability of staying in State 3:
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Single Wind Turbine: Markov Chain Prediction

e Obtain the transition probability matrix from measurements:

1,3,2,2,3,1,2,1,3,3,2,1,1,2,3,3,2,3,1,2,3,1,2,3,3,2,2,1,1,3,2,1,2,2,3
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Single Wind Turbine: Markov Chain Prediction

* Q: How can you choose states if the data is continuous?

* Q: How many states did we choose in the above figure?

e More states = Higher Computational Complexity
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Single Wind Turbine: Markov Chain Prediction

e For wind power, transition probability matrix is usually sparse.

} State 8
} State 5
} State 4

}State 3

Wind Speed (m's)

}Sta‘te 2

) }State1

4400

1 . . .

2 0.06 | 0.74 | 0.20 | 0.01 | 0.00 | 0.00
3 0.00 | 013 | 0.76 | 0.11 | 0.00 | 0.00
4 0.00 | 001 | 025 | 0.68 | 0.06 | 0.00
5 0.00 | 0.00 | 0.02 | 0.28 | 0.66 | 0.05
6 0.00 | 0.00 | 0.00 | 0.09 | 0.31 | 0.60

(a) Corresponding Markov Chain Model (c) State Transition Probabilities
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Texas Tech University
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Q: Is the corresponding transition probability matrix sparse?
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e Abdel-Karim et al. also used MC models for wind speed
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Single Wind Turbine

e Abdel-Karim et al. also used MC models for wind speed

.
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Ornginal State

Transition Probabilities with 32 States

Q: Does increasing the number of states help in modeling?

Dr. Hamed Mohsenian-Rad Communications and Control in Smart Grid Texas Tech University




Single Wind Turbine

e Q: Given a Markov Chain model, how can we make prediction?

* Q: What does prediction depend on?

State 1 2 3 4 5 [
1 060 | 038 | 0.02 | 0.00 | 0.00 | 0.00
2 006 | 0.74 | 0.20 | 0.00 0.00 | 0.00
3 000 | 0,13 | 0.76 | O.11 0.00 | 0.00
4 0.00 | 0.01 025 | 0.68 | 0.06 | 0.00
5 0.00 | 0.00 | 002 | 028 | 066 | 0.05
6 0.00 | 0,00 | 0,00 | 009 | 0.31 0.60
(a) Corresponding Markov Chain Model (b) State Transition Probabilities

e Q: Assume the current wind speed is 7 m/s:

 What do you predict wind speed to be in the next hour?

Dr. Hamed Mohsenian-Rad Communications and Control in Smart Grid Texas Tech University



Single Wind Turbine

e As an alternative model for linear wind speed predictors:

* We may use certain probability distribution functions.

* They too need training to obtain optimal parameters.

* Training can be done offline or online:

e But the common approach is offline parameter selection.
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Single Wind Turbine

e A common model is Weibull Distribution:

k X k-1 X k
Z(Zj exp—(zj If x>0,

0 If x<DO.

* PDF: :

f(x;4,k) =+

* Parameters to be estimated:
A and k

* We may use seasonal parameter estimation.
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Single Wind Turbine

e A common model is Weibull Distribution:

Probability

H_EFUBRBJIH‘I:T o ¥

0.20

L

DES MOINES

1985-1974
28,211 DATA POINTS

'T'H?Nn sg’t?u cxf:"d?“sj .o

— T
2N, 26,00 28,80
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Single Wind Turbine

e A common model is Weibull Distribution:

e Different parameter estimation methods can be used.

Cal-
) culated
Graphical Weighted LL SQ Maximum likelihood mean
c Ty & P G T I
(m 1 k (m &) {m s™1) & (m 1) (m &™) k {m s™1) {m s™1)
Ames 5.40 2.24 4.76 5.50 2.33 4,85 5.49 2.24 4.84 4,89
(1963-70)
Des Moines 35.20 2.22 4.41 5.21 2.42 4.42 5.54 2.38 4.71 4.69
(1965-74)

e The PDF can particularly be used for stochastic optimization.
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e Q: Why is wind power prediction different for wind farms?
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e Key Challenges:

* Wind speed can vary within a wind farm.

e In particular, in non-flat/mountain areas.

* One single wind speed measurement is not enough.

* A wind farm may include different types of turbines.

e Each type has a distinct wind-speed wind-power curve.

* We cannot scale up wind power prediction.
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* Wind speed (generated power) can vary within a wind farm:

2000 !
= 1500 7T peenss 7
Ei 9 ‘ v A/ . !
3 AR e To\s } o\ 4 8
> 1000 R AT A g AT B
o | YN | A <
§ One Wind Turbine Z go
00 — — — Closest Turbine |2
7 ——=—— Furthest Turbine D
0 o

60 80 100
Time

* Three identical turbines within same farm have different outputs.
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* A wind farm may include different types/classes of turbines:

1500 , , , . , .

a Cut=in épeeds ; 5 ; 5 5 5 %

 1000p O RS 7SI PR N S

= | | 77 f Class C S

S 5000 - | DTN T ------- e HoE

o | ' Rated output speeds — — —ClassC, || =
0 ' i i I r Y
0 3 6 9 12 15 18 21 24

Wind speed

e Different classes can have different wind speed / power curves.
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 Q: How can we tackle these two challenges?

e Option 1: We measure wind speed for each turbine.
e Perform individual forecasting for each single turbine.

e Aggregate the results to predict the farm’s output.

e This is a reasonable option:

e |t can be computationally complex and requires resources.
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 Q: How can we tackle these two challenges?

e Option 2: Wind-form specific prediction with limited data.
» Separate wind speed measurement for each class.
e Could be challenging.

e Still an ongoing research.

e Here, we briefly review the 2012 work by Murugesan et al.
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e Consider a wind farm with two types/classes of turbines.

6
x 10
-4 .67 ! .
: : ; ; ; Class 1
M q 3 3 i e Class?2
—4.6751 - I S A . L S SN | O TowerH | o
s ou o
T e ‘ : : : s Tower ~
> uggnjc..- we @ S " >~ ‘f .;E.:..":':'. . | H2 §
"‘ ...../ ‘r.; .guo.o- . . L] :.-0 o pot® .q.o.:‘* ]
—4.68 [ weee?- Lt e ::::.;—_-..—./ -------------------------------- . f.‘: ________ o
o ﬂ"r: " - seeet ool | 5
» E
: o
) ' [J]
- i i o

i i i i i i i
=1.176 -1.174-1.172 -1.17 -1.168-1.166 -1.164 -1.162 -1.16 -1.158 -1.156

X x 10°

e For each class, one turbine is linked with a meteorological tower.

e Such turbine is called the root of that turbine class.
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e Using one of the methods described before:
* We can predict wind speed and power output for the root.
e Example: Using Markov Chain or Weibull Distribution

* Q: How can we extend the prediction to turbines in same class?

e Q: Can we simply multiple it by number of turbines? Why?
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Wind Farm

e Let us define the minimum spanning tree (MST) for each class.

-4.672

-4.674

> -4.676

~4.678 s

Ref: Murugesan 2012

Class 1 root nodé

68 i i i i i i i
-1.175 1174 1173 -1172 -1171 -117 -1.169 -1.168 -1.167

X x 10°
x 10°
-4.676 | | ! ! ! | | ! !

: : : : : ' : : : ~
—4.678 TS o CE e R S AT §
: . : . ; : : : aa i =
YYDV o S S D R A
: ! : % >
S O e e A
' ' ' ) ' . Tower e
-4.684 ! i i i i i i iI_E i 2
-1.176-1.174-1.172 -1.17 -1.168-1.166-1.164-1.162 -1.16 -1.158-1.156

X 6

x 10
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 We want to answer this question:
e Q: Given the prediction of wind power for a parent turbine:

 How can we predict the wind power for the child turbine?

e Starting from the root:

* We can predict wind power for all turbines in same class.

e Again, we will use a linear predictor: Periig = & Pogrent
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Wind Farm

 We should estimate «a using experimental data:

Power output from child turbin

0 200 400 600 800 1000 1200 1400 1550
Power output from parent turbine
e For each turbine at MIST depth level d (Q: Why?):
P =0"P
Turibe — Root
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* For each class m, we estimate ¢, as:

1Y " Y
o, =argmin NZ(PCIassm - PCIassm)

t=1

1 N Ch Cn 2
=alg min WZ Z Pl - F)Rootm X(Z(am )di)

t=1 \ i=1l =1

where

N : Number of Data Samples
C,, : Number of Turbinesin Class m
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Wind Farm

e This results in predictions with reasonable accuracy:

1 T T T T T
Empirical cdf : :

— — — cdf from spatial analysis /

cdf

Aggregate power from. class 2  10°
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* A microgrid is a localized grouping of:

e Electricity generation

Distributed Energy

e Energy storage >
gy g Resources (DERs)

e Controllable and Non-controllable Load

* |t can operate in two modes:

e Grid-Connected

e |slanded
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Microgrid

* An isolated microgrid in Kythnos Island — Greece:

Battery PV Diesel| Battery PV |
MORE PV—MDE

a P
-

- W&m m’i‘gﬁr_iaﬁwh >
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Microgrid

* An microgrid facility: can operate in both modes:

It could be a zero-net energy building with behind-the-meter generator

Dr. Hamed Mohsenian-Rad Communications and Control in Smart Grid Texas Tech University 115




* A microgrid can operate autonomously:

—_

e Connected to grid when needed
__ Challenge: Having

. . Smooth Transitions
* Disconnected otherwise

* From the point of view of the grid operator:

e A connected microgrid can be controlled as if it was one entity.

* Microgrids allow distributed generation and control.
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* Microgrid as a building block for smart grid:

Zero-Fmission City
—

———

Wind ‘e’  Soalr, Data Center
Battery
S‘[mge Micro Grid

Inter-connecting Several Micro-grids to Build a Zero-Emission City
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* Microgrid as a building block for smart grid:
* [nter-connection options:

 DC and AC Lines.
e Coordination can be done through a data center and SCADA.

e Just like the Internet, each micro-grid will be:

* An Autonomous System (AS)
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